研究チーム概要 センサ基盤技術研究チーム
メンバーはこちら
研究目標
材料の特徴を活かしたセンサ材料/基材の設計・開発、ウェットプロセスによるセンサデバイス製造基盤技術の開発やプロセス中に起こる諸現象の科学的な解明、材料/プロセス/センサデバイス性能評価技術の開発を推進し、人や社会を支えるセンシングデバイスシステムの社会実装に貢献します。
保有技術
・フレキシブルデバイス材料技術
・熱電変換材料技術
・表面界面制御技術
・高精細積層デバイス印刷技術
・低温焼結技術
・溶液プロセス評価技術
・デバイス評価技術
・各種分光計測技術
・生体光学計測技術
・材料分析技術
主要特許・論文
1. "Penetration of a Mg: Ag alloy electrode thermal deposited on an
organic thin film", K. Suemori*, Nobuki Ibaraki, Jpn. J. Appl. Phys,
2019, 58, 038006.
2. "Strategic advantages of reactive polyiodide melts for scalable
perovskite photovoltaics", I. Turkevych*, S. Kazaoui, N. A. Belich, A.
Y. Grishko, S. A. Fateev, A. A. Petrov, T. Urano, S. Aramaki, S.
Kosar, M. Kondo, E. A. Goodilin, M. Graetzel, A. B. Tarasov., Nature
Nanotechnology 2019, 14, 57-63.
3. "Visible surface diffusion of gold nanostructures on a paper at
room temperature through localized surface plasmon resonance", N.
Fukuda*, S. Manaka, MRS Adv. 2019, doi: 10.1557/adv.2019.108
4. "Reverse Offset Printing of Semidried Metal Acetylacetonate Layers
and Its Application to a Solution-Processed IGZO TFT Fabrication", Y.
Kusaka*, N. Shirakawa, S. Ogura, J. Leppaniemi, A. Sneck, A. Alastalo,
H. Ushijima, N. Fukuda, ACS Applied Materials & Interfaces 2018, 10,
24339.
5. "Electrical response of culture media during bacterial growth on a
paper-based device", T. Srimongkon, M. Buerkle, A. Nakamura, T.
Enomae, H. Ushijima, N. Fukuda*, Jpn. J. Appl. Phys., 2017, 56,
05EC04.
6. "Spectroscopic analysis of autofluorescence distribution in
digestive organ for unstained metabolism-based tumor detection",H.
Arimoto*, A. Iwata, K. Kagawa, Y. Sanomura, S. Yoshida, S. Kawahito,
S. Tanaka, Imaging, Manipulation, and Analysis of Biomolecules, Cells,
and Tissues XV, 10068-, pp.12.2250776-
7. "Flexible InGaZnO TFT devices obtained via humid-UV irradiation
with an aqueous-fluoroalcoholic precursor", S. Ogura, C. Heajeong, S.
Uemura, H. Ushijima, N. Fukuda*, Flex. Print. Electron, 2016, 1,
045001.
8. "The Secret of Cool Plasma Sintering for Low-temperature Bulk
Formation from Copper Nanoparticles" N. Shirakawa*, 2016 International
Conference on Electronics Packaging (ICEP), p.133, IEEE Xplore, doi:
10.1109/ICEP.2016.7486797.
9. "High Resolution Paterning of Silver Conductive Lines by Adhesion
Contrast Planography", Y. Kusaka*, M. Koutake, H. Ushijima, J.
Micromech. Microeng. 2015, 25 095002.
10. "Imaging wavelength and light penetration depth for water content
distribution measurement of skin",H. Arimoto*, M. Egawa,Skin Res.
Technol. 2015, 21-1, 94-100.
11. "Overlay of semi-dried functional layers in offset printing for
rapid and high-precision fabrication of flexible TFTs", Y. Kusaka*, K.
Sugihara, M. Koutake, H. Ushijima,. Micromech. Microeng. 2014, 24,
035020.
12. "In-Ga-Zn oxide nanoparticles acting as oxide semiconductor
material synthesized via coprecipitation-based method", N. Fukuda*, Y.
Watanabe, S. Uemura, Y. Yoshida, T. Nakamura, and H. Ushijima, J.
Mater. Chem. C, 2014, 2, 2448.
13. "Flexible and lightweight thermoelectric generators composed of
carbon nanotube–polystyrene composites printed on film substrate", K.
Suemori*, S. Hoshino, T. Kamata, Appl. Phys. Lett. 2013, 103,
153902.
14. 特許第6411254号「平刷版を用いたパターン膜形成方法、形成装置」
15. 特許第6404068号「酸化物前駆体材料」
16.
特許第5713472号「熱電変換材料及び該材料を用いたフレキシブル熱電変換素子」
17. 特許第4296270号「ヘリウム3冷凍機利用磁化測定装置」
18. WO/2016/024586「金属材料の処理装置」
19. 特願2018-095883「光学的非侵襲的血液成分分析方法」
20.
特願2017-206418「蓄熱材の熱モニタリング方法及びこのための蓄熱材収容容器」