このウェブサイトではJavaScriptおよびスタイルシートを使用しております。正常に表示させるためにはJavaScriptを有効にしてください。ご覧いただいているのは国立国会図書館が保存した過去のページです。このページに掲載されている情報は過去のものであり、最新のものとは異なる場合がありますのでご注意下さい。

ご覧いただいているのは国立国会図書館が保存した2021年7月17日時点のページです。このページに掲載されている情報は過去のものであり、最新のものとは異なる場合がありますのでご注意下さい。収集時のURLは http(s)://unit.aist.go.jp/hiiri/nrehrg/english/research/index.html ですが、このURLは既に存在しない場合や異なるサイトになっている場合があります。

(注記)このページの著作権について

ヘルプ


保存日:

ヘルプ


保存日:

ご覧いただいているのは国立国会図書館が保存した2021年7月17日時点のページです。このページに掲載されている情報は過去のものであり、最新のものとは異なる場合がありますのでご注意下さい。収集時のURLは http(s)://unit.aist.go.jp/hiiri/nrehrg/english/research/index.html ですが、このURLは既に存在しない場合や異なるサイトになっている場合があります。

(注記)このページの著作権について

to main
  • FontSize:

Research

We are developing innovative neurorehabilitation technologies on the basis of scientific evidences mainly obtained from animal studies. Our project has three main components: study of brain reorganization that underlies functional recovery after stroke, and development of devices to monitor brain activity during rehabilitative training, and development of intervention methods to promote brain reorganization.

figure:The research concept of neurorehabitilitaion research group

The research concept of neurorehabitilitaion research group

1.Animal experiment-based neurorehabilitation

We are investigating plastic changes in gene expression, neural circuit, and brain activity that underlies functional recovery after brain damage using animal models. Based on the scientific evidences of plasticity, we are also developing innovative neurorehabilitation technologies.

figure:The research concept of animal experiment-based neurorehabilitation

The research concept of animal experiment-based neurorehabilitation

photo:A deep brain imaging system in freely moving rat

A deep brain imaging system in freely moving rat

photo:VR rehabilitation system for stroke patients

VR rehabilitation system for stroke patients

photo:microscope system

microscope system

2.Development of highly reliable functional near-infrared spectroscopy

The brain receives outside information and process/response to it in an appropriate way. For exploring where and how the function works, brain function measurement techniques, such as functional Magnetic Resonance Imaging (fMRI), functional Near-Infrared Spectroscopy (fNIRS), and Electroencephalogram (EEG), have been developed. We focus on fNIRS, and develop more reliable method to measure the brain functions.

figure:fNIRS data demonstrating brain activity change associated with motor function recovery

fNIRS data demonstrating brain activity change associated with motor function recovery

photo:Probe positioning system based on augmented reality (AR) technology

Probe positioning system based on
augmented reality (AR) technology

photo:Reflectance-modulation fNIRS technique for reducing scalp hemodynamics effect

photo:Reflectance-modulation fNIRS technique for reducing scalp hemodynamics effect

Reflectance-modulation fNIRS technique for reducing scalp hemodynamics effect

3.Artificial Intelligence and Brain Machine Interface

We aim to build artificial neural network model that duplicates visual information processing in the biological brain and apply the model to brain machine interface technology that decodes neural signals for mind reading.

figure:The research concept of Artificial Intelligence and Brain Machine Interface

The research concept of Artificial Intelligence and Brain Machine Interface

photo:Robot hand for BMI control

Robot hand for BMI control

photo:3D-printed model of brain

3D-printed model of brain

photo:Multi-channel neural recording system

Multi-channel neural recording system

AltStyle によって変換されたページ (->オリジナル) /