Skip to main content
Mathematics

Questions tagged [zeta-functions]

Questions on various generalizations of the Riemann zeta function (e.g. Dedekind zeta, Hasse–Weil zeta, L-functions, multiple zeta). Consider using the tag (riemann-zeta) instead if your question is specifically about Riemann's function.

Filter by
Sorted by
Tagged with
4 votes
1 answer
189 views

I would like to prove that $$\int_0^1 \operatorname{Li}_2 \left(\frac{1-x^2}{4}\right) \frac{2}{3+x^2} ,円\mathrm dx= \frac{\pi^3 \sqrt{3}}{486}.$$ It’s known that $\Im \operatorname{Li}_3(e^{2πi/3})= \...
1 vote
1 answer
125 views

Calculate: $${\int\limits_0^\infty{\left[{\frac{x^{s-1}}{e^x-1}-\frac{(e^x-1)^{s}}{(e^x-1)^2}}\right]dx=}{,円,円\color{red}{?}}}\tag{1}$$ For 0ドル\lt\Re(s)\lt1$. An integral definition of $\zeta(s)$ Zeta ...
3 votes
1 answer
75 views

The Airy zeta function is defined as a sum over the zeroes of the $\mathrm{Ai}$ airy function. $$\zeta _{\mathrm {Ai} }(s)=\sum _{i=1}^{\infty }{\frac {1}{|a_{i}|^{s}}}$$ Integer values for $\zeta_{\...
0 votes
1 answer
77 views

The Riemann zeta function has the following representations for $$\text{Re}(s) > 1$$: As a Dirichlet series: $$ \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s} $$ And as an Euler product: $$ \...
3 votes
2 answers
226 views

A week ago, a user on Quora asked this question: How do you show that $$I=\iiint_{[0,1]^{3}}\frac{\ln x\ln y\ln z\ln(1-xyz)}{(1-x)(1-y)}\mathrm{d}x\mathrm{d}y\mathrm{d}z=\frac{1}{701}\left(386\zeta(5)...
6 votes
2 answers
265 views

Calculate the series $$\sum_{n,m,r>0}\frac{1}{mnr(n+m)(n+r)(m+r)}=?$$ \begin{align*} S&=\sum\limits_{n,m,r\ge1}\frac{1}{mnr}\iiint\limits_{t,u,v>0} e^{-t(n+m)}e^{-u(n+r)}e^{-v(m+r)},円dt,円du\...
4 votes
2 answers
209 views

Stein's reasoning in page 170: Consider the theta function, already introduced in Chapter 4, which is defined for real $t>0$ by $$ \vartheta(t)=\sum_{n=-\infty}^{\infty} e^{-\pi n^2 t} $$ An ...
0 votes
0 answers
57 views

I read somewhere that every $L$-function of an imaginary quadratic field $K$ with Grössencharacter is the $L$-function of a cusp form for a certain congruence group of $\operatorname{SL}_2(\Bbb Z)$. ...

15 30 50 per page
1
2 3 4 5
...
58

AltStyle によって変換されたページ (->オリジナル) /