Skip to main content
Springer Nature Link
Log in

Jacobians and Hessians of mean value coordinates for closed triangular meshes

  • Original Article
  • Published:

Abstract

Mean value coordinates provide an efficient mechanism for the interpolation of scalar functions defined on orientable domains with a nonconvex boundary. They present several interesting features, including the simplicity and speed that yield from their closed-form expression. In several applications though, it is desirable to enforce additional constraints involving the partial derivatives of the interpolated function, as done in the case of the Green coordinates approximation scheme (Ben-Chen, Weber, Gotsman, ACM Trans. Graph.:1–11, 2009) for interactive 3D model deformation.

In this paper, we introduce the analytic expressions of the Jacobian and the Hessian of functions interpolated through mean value coordinates. We provide these expressions both for the 2D and 3D case. We also provide a thorough analysis of their degenerate configurations along with accurate approximations of the partial derivatives in these configurations. Extensive numerical experiments show the accuracy of our derivation. In particular, we illustrate the improvements of our formulae over a variety of finite differences schemes in terms of precision and usability. We demonstrate the utility of this derivation in several applications, including cage-based implicit 3D model deformations (i.e., variational MVC deformations). This technique allows for easy and interactive model deformations with sparse positional, rotational, and smoothness constraints. Moreover, the cages produced by the algorithm can be directly reused for further manipulations, which makes our framework directly compatible with existing software supporting mean value coordinates based deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from 17,985円 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Babuska, I., Oden, J.: Verification and validation in computational engineering and science: basic concepts. In: Computer Methods in Applied Mechanics and Engineering, pp. 4057–4066 (2004)

    Google Scholar

  2. Ben-Chen, M., Weber, O., Gotsman, C.: Variational harmonic maps for space deformation. ACM Trans. Graph. (2009). doi:10.1145/153126.1531340, 1–11

    Google Scholar

  3. Borosán, P., Howard, R., Zhang, S., Nealen, A.: Hybrid mesh editing. In: Proc. of Eurographics (2010)

    Google Scholar

  4. Loop, C.T., DeRose, T.D.: A mulisided generalization of Bézier surfaces. ACM Trans. Graph. 8, 204–234 (1989)

    Article MATH Google Scholar

  5. Wachspress, E.L.: A Rational Finite Element Basis. Academic Press, New York (1975)

    MATH Google Scholar

  6. Etiene, T., Scheiddeger, C., Nonato, L., Kirby, R., Silva, C.: Verifiable visualization for isosurface extraction. IEEE Trans. Vis. Comput. Graph. 15, 1227–1234 (2009)

    Article Google Scholar

  7. Etiene, T., Nonato, L., Scheiddeger, C., Tierny, J., Peters, T.J., Pascucci, V., Kirby, R., Silva, C.: Topology verification for isosurface extraction. IEEE Trans. Vis. Comput. Graph. (2011). doi:10.1109/TVCG.2011.109

    Google Scholar

  8. Flannery, B.P., Press, W.H., Teukolsky, S.A., Vetterling, W.: Numerical Recipes in C. Press Syndicate of the University of Cambridge, New York (1992)

    MATH Google Scholar

  9. Floater, M.: Parameterization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14, 231–250 (1997)

    Article MATH MathSciNet Google Scholar

  10. Floater, M.: Parametric tilings and scattered data approximation. Int. J. Shape Model. 4, 165–182 (1998)

    Article Google Scholar

  11. Floater, M.: Mean value coordinates. Comput. Aided Geom. Des. 20, 19–27 (2003)

    Article MATH MathSciNet Google Scholar

  12. Floater, M.S., Kos, G., Reimers, M.: Mean value coordinates in 3D. Comput. Aided Geom. Des. 22, 623–631 (2005)

    Article MATH MathSciNet Google Scholar

  13. Fornberg, B.: Numerical differentiation of analytic functions. ACM Trans. Math. Softw. 7(4), 512–526 (1981)

    Article MATH MathSciNet Google Scholar

  14. Hormann, K., Floater, M.: Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25, 1424–1441 (2006)

    Article Google Scholar

  15. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.Y., Teng, S.H., Bao, H., Guo, B., Shum, H.Y.: Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 1126–1134 (2006)

    Article Google Scholar

  16. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26 (2007)

  17. Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24(3), 561–566 (2005)

    Article Google Scholar

  18. Langer, T., Belyaev, A., Seidel, H.P.: Spherical barycentric coordinates. In: Proc. of Symposium on Geometry Processing, pp. 81–88 (2006)

    Google Scholar

  19. Lipman, Y., Kopf, J., Cohen-Or, D., Levin, D.: Gpu-assisted positive mean value coordinates for mesh deformation. In: Symposium on Geometry Processing, pp. 117–123 (2007)

    Google Scholar

  20. Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. ACM Trans. Graph. 27(3), 1–10 (2008)

    Google Scholar

  21. Malsch, E., Dasgupta, G.: Algebraic construction of smooth interpolants on polygonal domains. In: Proc. of International Mathematica Symposium (2003)

    Google Scholar

  22. Meyer, M., Lee, H., Barr, A., Desbrun, M.: Generalized barycentric coordinates for irregular polygons. J. Graph. Tools 7, 13–22 (2002)

    Article MATH Google Scholar

  23. Nieser, M., Reitebuch, U., Polthier, K.: CubeCover—parameterization of 3D volumes. Comput. Graph. Forum 30, 1397–1406 (2011)

    Article Google Scholar

  24. Squire, W., Trapp, G.: Using complex variables to estimate derivatives of real functions. SIAM Rev. 40(1), 110–112 (1998)

    Article MATH MathSciNet Google Scholar

  25. Thiery, J.M.: MVC derivatives C++ implementation. (2013). http://sourceforge.net/projects/meanvaluecoordinatesderivs/files/latest/download?source=files

  26. Urago, M.: Analytical integrals of fundamental solution of three-dimensional Laplace equation and their gradients. Trans. Jpn. Soc. Mech. Eng. C 66, 254–261 (2000)

    Article Google Scholar

  27. Warren, J.: Barycentric coordinates for convex polytopes. Adv. Comput. Math. 6, 97–108 (1996)

    Article MathSciNet Google Scholar

  28. Warren, J., Schaefer, S., Hirani, A., Desbrun, M.: Barycentric coordinates for convex sets. Adv. Comput. Math. 27, 319–338 (2007)

    Article MATH MathSciNet Google Scholar

Download references

Author information

Authors and Affiliations

  1. Telecom-ParisTech, CNRS/LTCI, 43 rue Barrault, 75013, Paris, France

    Jean-Marc Thiery, Julien Tierny & Tamy Boubekeur

Authors
  1. Jean-Marc Thiery
  2. Julien Tierny
  3. Tamy Boubekeur

Corresponding author

Correspondence to Jean-Marc Thiery.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(AVI 6.5 MB)

About this article

Cite this article

Thiery, JM., Tierny, J. & Boubekeur, T. Jacobians and Hessians of mean value coordinates for closed triangular meshes. Vis Comput 30, 981–995 (2014). https://doi.org/10.1007/s00371-013-0889-y

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00371-013-0889-y

Keywords

AltStyle によって変換されたページ (->オリジナル) /