Data.Copointed
class Copointed p where Source #
Copointed does not require a Functor , as the only relationship between copoint and fmap is given by a free theorem.
Copointed
Functor
copoint
fmap
Methods
copoint :: p a -> a Source #
Defined in Data.Copointed
copoint :: Identity a -> a Source #
copoint :: First a -> a Source #
copoint :: Last a -> a Source #
copoint :: Max a -> a Source #
copoint :: Min a -> a Source #
copoint :: WrappedMonoid a -> a Source #
copoint :: Dual a -> a Source #
copoint :: Product a -> a Source #
copoint :: Sum a -> a Source #
copoint :: NonEmpty a -> a Source #
copoint :: Par1 a -> a Source #
copoint :: Tree a -> a Source #
copoint :: WrappedMonad m a -> a Source #
copoint :: Arg a a0 -> a0 Source #
copoint :: MaybeApply f a -> a Source #
copoint :: WrappedApplicative f a -> a Source #
copoint :: Lift f a -> a Source #
copoint :: (a, a0) -> a0 Source #
copoint :: Rec1 f a -> a Source #
copoint :: EnvT e w a -> a Source #
copoint :: StoreT s w a -> a Source #
copoint :: TracedT m w a -> a Source #
copoint :: Tagged a a0 -> a0 Source #
copoint :: Backwards f a -> a Source #
copoint :: IdentityT m a -> a Source #
copoint :: WriterT w m a -> a Source #
copoint :: Reverse f a -> a Source #
copoint :: (a, b, a0) -> a0 Source #
copoint :: Sum f g a -> a Source #
copoint :: (f :+: g) a -> a Source #
copoint :: (a, b, c, a0) -> a0 Source #
copoint :: (m -> a) -> a Source #
copoint :: Compose p q a -> a Source #
copoint :: (f :.: g) a -> a Source #
copoint :: M1 i c f a -> a Source #
AltStyle によって変換されたページ (->オリジナル) / アドレス: モード: デフォルト 音声ブラウザ ルビ付き 配色反転 文字拡大 モバイル