{-# LANGUAGE GADTs #-}{-# LANGUAGE Rank2Types #-}------------------------------------------------------------------------------- |-- Module : Data.Machine.Pipe-- Copyright : (C) 2015 Yorick Laupa, Gabriel Gonzalez-- License : BSD-style (see the file LICENSE)---- Maintainer : Yorick Laupa <yo.eight@gmail.com>-- Stability : provisional-- Portability : Rank-2 Types, GADTs---- Allows bidirectional communication between two MachineT. Exposed the-- same interface of Pipes library.----------------------------------------------------------------------------moduleData.Machine.PipewhereimportControl.MonadimportData.VoidimportData.Machine.Plan importData.Machine.Type infixl8>~> infixl7>+> infixl7>>~ infixr6+>> dataExchange a' a b' b c whereRequest ::a' ->Exchange a' a b' b a Respond ::b ->Exchange a' a b' b b' typeProxy a' a b' b m c =MachineT m (Exchange a' a b' b )c -- | 'Effect's neither 'request' nor 'respond'typeEffect m r =Proxy Void()()Voidm r -- | @Client a' a@ sends requests of type @a'@ and receives responses of-- type @a@. 'Client's only 'request' and never 'respond'.typeClient a' a m r =Proxy a' a ()Voidm r -- | @Server b' b@ receives requests of type @b'@ and sends responses of type-- @b@. 'Server's only 'respond' and never 'request'.typeServer b' b m r =Proxy Void()b' b m r -- | Like 'Effect', but with a polymorphic typetypeEffect' m r =forallx' x y' y .Proxy x' x y' y m r -- | Like 'Server', but with a polymorphic typetypeServer' b' b m r =forallx' x .Proxy x' x b' b m r -- | Like 'Client', but with a polymorphic typetypeClient' a' a m r =forally' y .Proxy a' a y' y m r -- | Send a value of type a' upstream and block waiting for a reply of type a.-- 'request' is the identity of the request category.request ::a' ->PlanT (Exchange a' a y' y )o m a request :: forall a' a y' y o (m :: * -> *).
a' -> PlanT (Exchange a' a y' y) o m a
request a'
a =Exchange a' a y' y a -> Plan (Exchange a' a y' y) o a
forall (k :: * -> *) i o. k i -> Plan k o i
awaits (a' -> Exchange a' a y' y a
forall a' a b' b. a' -> Exchange a' a b' b a
Request a'
a )-- | Send a value of type a downstream and block waiting for a reply of type a'-- 'respond' is the identity of the respond category.respond ::a ->PlanT (Exchange x' x a' a )o m a' respond :: forall a x' x a' o (m :: * -> *).
a -> PlanT (Exchange x' x a' a) o m a'
respond a
a =Exchange x' x a' a a' -> Plan (Exchange x' x a' a) o a'
forall (k :: * -> *) i o. k i -> Plan k o i
awaits (a -> Exchange x' x a' a a'
forall b a' a b'. b -> Exchange a' a b' b b'
Respond a
a )-- | Forward responses followed by requests.-- 'push' is the identity of the push category.push ::Monadm =>a ->Proxy a' a a' a m r push :: forall (m :: * -> *) a a' r. Monad m => a -> Proxy a' a a' a m r
push =PlanT (Exchange a' a a' a) r m Any
-> MachineT m (Exchange a' a a' a) r
forall (m :: * -> *) (k :: * -> *) o a.
Monad m =>
PlanT k o m a -> MachineT m k o
construct (PlanT (Exchange a' a a' a) r m Any
 -> MachineT m (Exchange a' a a' a) r)
-> (a -> PlanT (Exchange a' a a' a) r m Any)
-> a
-> MachineT m (Exchange a' a a' a) r
forall b c a. (b -> c) -> (a -> b) -> a -> c
.a -> PlanT (Exchange a' a a' a) r m Any
forall {b} {x'} {o} {m :: * -> *} {c}.
b -> PlanT (Exchange x' b x' b) o m c
go wherego :: b -> PlanT (Exchange x' b x' b) o m c
go =b -> PlanT (Exchange x' b x' b) o m x'
forall a x' x a' o (m :: * -> *).
a -> PlanT (Exchange x' x a' a) o m a'
respond (b -> PlanT (Exchange x' b x' b) o m x')
-> (x' -> PlanT (Exchange x' b x' b) o m c)
-> b
-> PlanT (Exchange x' b x' b) o m c
forall (m :: * -> *) a b c.
Monad m =>
(a -> m b) -> (b -> m c) -> a -> m c
>=>x' -> PlanT (Exchange x' b x' b) o m b
forall a' a y' y o (m :: * -> *).
a' -> PlanT (Exchange a' a y' y) o m a
request (x' -> PlanT (Exchange x' b x' b) o m b)
-> (b -> PlanT (Exchange x' b x' b) o m c)
-> x'
-> PlanT (Exchange x' b x' b) o m c
forall (m :: * -> *) a b c.
Monad m =>
(a -> m b) -> (b -> m c) -> a -> m c
>=>b -> PlanT (Exchange x' b x' b) o m c
go -- | Compose two proxies blocked while 'request'ing data, creating a new proxy-- blocked while 'request'ing data.-- ('>~>') is the composition operator of the push category.(>~>) ::Monadm =>(_a ->Proxy a' a b' b m r )->(b ->Proxy b' b c' c m r )->_a ->Proxy a' a c' c m r (_a -> Proxy a' a b' b m r
fa >~> :: forall (m :: * -> *) _a a' a b' b r c' c.
Monad m =>
(_a -> Proxy a' a b' b m r)
-> (b -> Proxy b' b c' c m r) -> _a -> Proxy a' a c' c m r
>~> b -> Proxy b' b c' c m r
fb )_a
a =_a -> Proxy a' a b' b m r
fa _a
a Proxy a' a b' b m r
-> (b -> Proxy b' b c' c m r) -> Proxy a' a c' c m r
forall (m :: * -> *) a' a b' b r c' c.
Monad m =>
Proxy a' a b' b m r
-> (b -> Proxy b' b c' c m r) -> Proxy a' a c' c m r
>>~ b -> Proxy b' b c' c m r
fb -- | (p >>~ f) pairs each 'respond' in p with an 'request' in f.(>>~) ::Monadm =>Proxy a' a b' b m r ->(b ->Proxy b' b c' c m r )->Proxy a' a c' c m r Proxy a' a b' b m r
pm >>~ :: forall (m :: * -> *) a' a b' b r c' c.
Monad m =>
Proxy a' a b' b m r
-> (b -> Proxy b' b c' c m r) -> Proxy a' a c' c m r
>>~ b -> Proxy b' b c' c m r
fb =m (Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
-> MachineT m (Exchange a' a c' c) r
forall (m :: * -> *) (k :: * -> *) o.
m (Step k o (MachineT m k o)) -> MachineT m k o
MachineT (m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
 -> MachineT m (Exchange a' a c' c) r)
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
-> MachineT m (Exchange a' a c' c) r
forall a b. (a -> b) -> a -> b
$Proxy a' a b' b m r
-> m (Step (Exchange a' a b' b) r (Proxy a' a b' b m r))
forall (m :: * -> *) (k :: * -> *) o.
MachineT m k o -> m (Step k o (MachineT m k o))
runMachineT  Proxy a' a b' b m r
pm m (Step (Exchange a' a b' b) r (Proxy a' a b' b m r))
-> (Step (Exchange a' a b' b) r (Proxy a' a b' b m r)
 -> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)))
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>=\Step (Exchange a' a b' b) r (Proxy a' a b' b m r)
p ->caseStep (Exchange a' a b' b) r (Proxy a' a b' b m r)
p ofStep (Exchange a' a b' b) r (Proxy a' a b' b m r)
Stop ->Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
returnStep (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
forall (k :: * -> *) o r. Step k o r
Stop Yield r
r Proxy a' a b' b m r
n ->Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return(Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
 -> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)))
-> Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
forall a b. (a -> b) -> a -> b
$r
-> MachineT m (Exchange a' a c' c) r
-> Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
forall (k :: * -> *) o r. o -> r -> Step k o r
Yield r
r (Proxy a' a b' b m r
n Proxy a' a b' b m r
-> (b -> Proxy b' b c' c m r) -> MachineT m (Exchange a' a c' c) r
forall (m :: * -> *) a' a b' b r c' c.
Monad m =>
Proxy a' a b' b m r
-> (b -> Proxy b' b c' c m r) -> Proxy a' a c' c m r
>>~ b -> Proxy b' b c' c m r
fb )Await t -> Proxy a' a b' b m r
k (Request a'
a' )Proxy a' a b' b m r
ff ->Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return(Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
 -> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)))
-> Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
forall a b. (a -> b) -> a -> b
$(t -> MachineT m (Exchange a' a c' c) r)
-> Exchange a' a c' c t
-> MachineT m (Exchange a' a c' c) r
-> Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
forall (k :: * -> *) o r t. (t -> r) -> k t -> r -> Step k o r
Await (\t
a ->t -> Proxy a' a b' b m r
k t
a Proxy a' a b' b m r
-> (b -> Proxy b' b c' c m r) -> MachineT m (Exchange a' a c' c) r
forall (m :: * -> *) a' a b' b r c' c.
Monad m =>
Proxy a' a b' b m r
-> (b -> Proxy b' b c' c m r) -> Proxy a' a c' c m r
>>~ b -> Proxy b' b c' c m r
fb )(a' -> Exchange a' a c' c a
forall a' a b' b. a' -> Exchange a' a b' b a
Request a'
a' )(Proxy a' a b' b m r
ff Proxy a' a b' b m r
-> (b -> Proxy b' b c' c m r) -> MachineT m (Exchange a' a c' c) r
forall (m :: * -> *) a' a b' b r c' c.
Monad m =>
Proxy a' a b' b m r
-> (b -> Proxy b' b c' c m r) -> Proxy a' a c' c m r
>>~ b -> Proxy b' b c' c m r
fb )Await t -> Proxy a' a b' b m r
k (Respond b
b )Proxy a' a b' b m r
_->MachineT m (Exchange a' a c' c) r
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
forall (m :: * -> *) (k :: * -> *) o.
MachineT m k o -> m (Step k o (MachineT m k o))
runMachineT (t -> Proxy a' a b' b m r
t -> MachineT m (Exchange a' a t b) r
k (t -> MachineT m (Exchange a' a t b) r)
-> Proxy t b c' c m r -> MachineT m (Exchange a' a c' c) r
forall (m :: * -> *) b' a' a b r c' c.
Monad m =>
(b' -> Proxy a' a b' b m r)
-> Proxy b' b c' c m r -> Proxy a' a c' c m r
+>> b -> Proxy b' b c' c m r
fb b
b )-- | Forward requests followed by responses.-- 'pull' is the identity of the pull category.pull ::Monadm =>a' ->Proxy a' a a' a m r pull :: forall (m :: * -> *) a' a r. Monad m => a' -> Proxy a' a a' a m r
pull =PlanT (Exchange a' a a' a) r m Any
-> MachineT m (Exchange a' a a' a) r
forall (m :: * -> *) (k :: * -> *) o a.
Monad m =>
PlanT k o m a -> MachineT m k o
construct (PlanT (Exchange a' a a' a) r m Any
 -> MachineT m (Exchange a' a a' a) r)
-> (a' -> PlanT (Exchange a' a a' a) r m Any)
-> a'
-> MachineT m (Exchange a' a a' a) r
forall b c a. (b -> c) -> (a -> b) -> a -> c
.a' -> PlanT (Exchange a' a a' a) r m Any
forall {b} {y} {o} {m :: * -> *} {c}.
b -> PlanT (Exchange b y b y) o m c
go wherego :: b -> PlanT (Exchange b y b y) o m c
go =b -> PlanT (Exchange b y b y) o m y
forall a' a y' y o (m :: * -> *).
a' -> PlanT (Exchange a' a y' y) o m a
request (b -> PlanT (Exchange b y b y) o m y)
-> (y -> PlanT (Exchange b y b y) o m c)
-> b
-> PlanT (Exchange b y b y) o m c
forall (m :: * -> *) a b c.
Monad m =>
(a -> m b) -> (b -> m c) -> a -> m c
>=>y -> PlanT (Exchange b y b y) o m b
forall a x' x a' o (m :: * -> *).
a -> PlanT (Exchange x' x a' a) o m a'
respond (y -> PlanT (Exchange b y b y) o m b)
-> (b -> PlanT (Exchange b y b y) o m c)
-> y
-> PlanT (Exchange b y b y) o m c
forall (m :: * -> *) a b c.
Monad m =>
(a -> m b) -> (b -> m c) -> a -> m c
>=>b -> PlanT (Exchange b y b y) o m c
go -- | Compose two proxies blocked in the middle of 'respond'ing, creating a new-- proxy blocked in the middle of 'respond'ing.-- ('>+>') is the composition operator of the pull category.(>+>) ::Monadm =>(b' ->Proxy a' a b' b m r )->(_c' ->Proxy b' b c' c m r )->_c' ->Proxy a' a c' c m r (b' -> Proxy a' a b' b m r
fb' >+> :: forall (m :: * -> *) b' a' a b r _c' c' c.
Monad m =>
(b' -> Proxy a' a b' b m r)
-> (_c' -> Proxy b' b c' c m r) -> _c' -> Proxy a' a c' c m r
>+> _c' -> Proxy b' b c' c m r
fc' )_c'
c' =b' -> Proxy a' a b' b m r
fb' (b' -> Proxy a' a b' b m r)
-> Proxy b' b c' c m r -> Proxy a' a c' c m r
forall (m :: * -> *) b' a' a b r c' c.
Monad m =>
(b' -> Proxy a' a b' b m r)
-> Proxy b' b c' c m r -> Proxy a' a c' c m r
+>> _c' -> Proxy b' b c' c m r
fc' _c'
c' -- | (f +>> p) pairs each 'request' in p with a 'respond' in f.(+>>) ::Monadm =>(b' ->Proxy a' a b' b m r )->Proxy b' b c' c m r ->Proxy a' a c' c m r b' -> Proxy a' a b' b m r
fb' +>> :: forall (m :: * -> *) b' a' a b r c' c.
Monad m =>
(b' -> Proxy a' a b' b m r)
-> Proxy b' b c' c m r -> Proxy a' a c' c m r
+>> Proxy b' b c' c m r
pm =m (Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
-> MachineT m (Exchange a' a c' c) r
forall (m :: * -> *) (k :: * -> *) o.
m (Step k o (MachineT m k o)) -> MachineT m k o
MachineT (m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
 -> MachineT m (Exchange a' a c' c) r)
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
-> MachineT m (Exchange a' a c' c) r
forall a b. (a -> b) -> a -> b
$Proxy b' b c' c m r
-> m (Step (Exchange b' b c' c) r (Proxy b' b c' c m r))
forall (m :: * -> *) (k :: * -> *) o.
MachineT m k o -> m (Step k o (MachineT m k o))
runMachineT Proxy b' b c' c m r
pm m (Step (Exchange b' b c' c) r (Proxy b' b c' c m r))
-> (Step (Exchange b' b c' c) r (Proxy b' b c' c m r)
 -> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)))
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>=\Step (Exchange b' b c' c) r (Proxy b' b c' c m r)
p ->caseStep (Exchange b' b c' c) r (Proxy b' b c' c m r)
p ofStep (Exchange b' b c' c) r (Proxy b' b c' c m r)
Stop ->Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
returnStep (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
forall (k :: * -> *) o r. Step k o r
Stop Yield r
r Proxy b' b c' c m r
n ->Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return(Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
 -> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)))
-> Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
forall a b. (a -> b) -> a -> b
$r
-> MachineT m (Exchange a' a c' c) r
-> Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
forall (k :: * -> *) o r. o -> r -> Step k o r
Yield r
r (b' -> Proxy a' a b' b m r
fb' (b' -> Proxy a' a b' b m r)
-> Proxy b' b c' c m r -> MachineT m (Exchange a' a c' c) r
forall (m :: * -> *) b' a' a b r c' c.
Monad m =>
(b' -> Proxy a' a b' b m r)
-> Proxy b' b c' c m r -> Proxy a' a c' c m r
+>> Proxy b' b c' c m r
n )Await t -> Proxy b' b c' c m r
k (Request b'
b' )Proxy b' b c' c m r
_->MachineT m (Exchange a' a c' c) r
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
forall (m :: * -> *) (k :: * -> *) o.
MachineT m k o -> m (Step k o (MachineT m k o))
runMachineT (b' -> Proxy a' a b' b m r
fb' b'
b' Proxy a' a b' b m r
-> (b -> Proxy b' b c' c m r) -> MachineT m (Exchange a' a c' c) r
forall (m :: * -> *) a' a b' b r c' c.
Monad m =>
Proxy a' a b' b m r
-> (b -> Proxy b' b c' c m r) -> Proxy a' a c' c m r
>>~ b -> Proxy b' b c' c m r
t -> Proxy b' b c' c m r
k )Await t -> Proxy b' b c' c m r
k (Respond c
c )Proxy b' b c' c m r
ff ->Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return(Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
 -> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)))
-> Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
-> m (Step
 (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r))
forall a b. (a -> b) -> a -> b
$(t -> MachineT m (Exchange a' a c' c) r)
-> Exchange a' a c' c t
-> MachineT m (Exchange a' a c' c) r
-> Step (Exchange a' a c' c) r (MachineT m (Exchange a' a c' c) r)
forall (k :: * -> *) o r t. (t -> r) -> k t -> r -> Step k o r
Await (\t
c' ->b' -> Proxy a' a b' b m r
fb' (b' -> Proxy a' a b' b m r)
-> Proxy b' b c' c m r -> MachineT m (Exchange a' a c' c) r
forall (m :: * -> *) b' a' a b r c' c.
Monad m =>
(b' -> Proxy a' a b' b m r)
-> Proxy b' b c' c m r -> Proxy a' a c' c m r
+>> t -> Proxy b' b c' c m r
k t
c' )(c -> Exchange a' a c' c c'
forall b a' a b'. b -> Exchange a' a b' b b'
Respond c
c )(b' -> Proxy a' a b' b m r
fb' (b' -> Proxy a' a b' b m r)
-> Proxy b' b c' c m r -> MachineT m (Exchange a' a c' c) r
forall (m :: * -> *) b' a' a b r c' c.
Monad m =>
(b' -> Proxy a' a b' b m r)
-> Proxy b' b c' c m r -> Proxy a' a c' c m r
+>> Proxy b' b c' c m r
ff )-- | It is impossible for an `Exchange` to hold a `Void` value.absurdExchange ::Exchange Voida b Voidt ->c absurdExchange :: forall a b t c. Exchange Void a b Void t -> c
absurdExchange (Request Void
z )=Void -> c
forall a. Void -> a
absurdVoid
z absurdExchange (Respond Void
z )=Void -> c
forall a. Void -> a
absurdVoid
z -- | Run a self-contained 'Effect', converting it back to the base monad.runEffect ::Monadm =>Effect m o ->m [o ]runEffect :: forall (m :: * -> *) o. Monad m => Effect m o -> m [o]
runEffect (MachineT m (Step
 (Exchange Void () () Void)
 o
 (MachineT m (Exchange Void () () Void) o))
m )=m (Step
 (Exchange Void () () Void)
 o
 (MachineT m (Exchange Void () () Void) o))
m m (Step
 (Exchange Void () () Void)
 o
 (MachineT m (Exchange Void () () Void) o))
-> (Step
 (Exchange Void () () Void)
 o
 (MachineT m (Exchange Void () () Void) o)
 -> m [o])
-> m [o]
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>=\Step
 (Exchange Void () () Void)
 o
 (MachineT m (Exchange Void () () Void) o)
v ->caseStep
 (Exchange Void () () Void)
 o
 (MachineT m (Exchange Void () () Void) o)
v ofStep
 (Exchange Void () () Void)
 o
 (MachineT m (Exchange Void () () Void) o)
Stop ->[o] -> m [o]
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return[]Yield o
o MachineT m (Exchange Void () () Void) o
n ->([o] -> [o]) -> m [o] -> m [o]
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM(o
o o -> [o] -> [o]
forall a. a -> [a] -> [a]
:)(MachineT m (Exchange Void () () Void) o -> m [o]
forall (m :: * -> *) o. Monad m => Effect m o -> m [o]
runEffect MachineT m (Exchange Void () () Void) o
n )Await t -> MachineT m (Exchange Void () () Void) o
_Exchange Void () () Void t
y MachineT m (Exchange Void () () Void) o
_->Exchange Void () () Void t -> m [o]
forall a b t c. Exchange Void a b Void t -> c
absurdExchange Exchange Void () () Void t
y -- | Like 'runEffect' but discarding any produced value.runEffect_ ::Monadm =>Effect m o ->m ()runEffect_ :: forall (m :: * -> *) o. Monad m => Effect m o -> m ()
runEffect_ (MachineT m (Step
 (Exchange Void () () Void)
 o
 (MachineT m (Exchange Void () () Void) o))
m )=m (Step
 (Exchange Void () () Void)
 o
 (MachineT m (Exchange Void () () Void) o))
m m (Step
 (Exchange Void () () Void)
 o
 (MachineT m (Exchange Void () () Void) o))
-> (Step
 (Exchange Void () () Void)
 o
 (MachineT m (Exchange Void () () Void) o)
 -> m ())
-> m ()
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>=\Step
 (Exchange Void () () Void)
 o
 (MachineT m (Exchange Void () () Void) o)
v ->caseStep
 (Exchange Void () () Void)
 o
 (MachineT m (Exchange Void () () Void) o)
v ofStep
 (Exchange Void () () Void)
 o
 (MachineT m (Exchange Void () () Void) o)
Stop ->() -> m ()
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return()Yield o
_MachineT m (Exchange Void () () Void) o
n ->MachineT m (Exchange Void () () Void) o -> m ()
forall (m :: * -> *) o. Monad m => Effect m o -> m ()
runEffect_ MachineT m (Exchange Void () () Void) o
n Await t -> MachineT m (Exchange Void () () Void) o
_Exchange Void () () Void t
y MachineT m (Exchange Void () () Void) o
_->Exchange Void () () Void t -> m ()
forall a b t c. Exchange Void a b Void t -> c
absurdExchange Exchange Void () () Void t
y 

AltStyle によって変換されたページ (->オリジナル) /