Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

spytensor/prepare_detection_dataset

Repository files navigation

背景

万事开头难。之前写图像识别的博客教程,也是为了方便那些学了很多理论知识,却对实际项目无从下手的小伙伴,后来转到目标检测来了,师从烨兄、亚光兄,从他们那学了不少检测的知识和操作,今天也终于闲下了,准备写个检测系列的总结。一方面分享知识希望可以一起学习,另一方面让一部分人少走弯路,快速上路(入坑)。

此部分代码:Github 博客地址: 目标检测系列一:如何制作数据集?

更新

  • (28/03/2019)
    • 新增 csv2labelme

1. 内容介绍

系列一主要介绍如何在常见的几种数据格式之间进行转换,以及万能中介csv格式的使用,这里列出以下几个:

  • csv to coco
  • csv to voc
  • labelme to coco
  • labelme to voc
  • csv to json

2. 标准格式

在使用转换脚本之前,必须要明确的几种格式

2.1 csv

不要一看是csv文件就直接拿来运行,如果不是,可以自行修改代码,或者修改标注文件。

转换脚本支持的csv格式应为以下形式:

  • csv/
    • labels.csv
    • images/
      • image1.jpg
      • image2.jpg
      • ...

labels.csv 的形式:

/path/to/image,xmin,ymin,xmax,ymax,label

例如:

/mfs/dataset/face/0d4c5e4f-fc3c-4d5a-906c-105.jpg,450,154,754,341,face
/mfs/dataset/face/0ddfc5aea-fcdac-421-92dad-144.jpg,143,154,344,341,face
...

注:图片路径请使用绝对路径

2.2 voc

标准的voc数据格式如下:

  • VOC2007/
    • Annotations/
      • 0d4c5e4f-fc3c-4d5a-906c-105.xml
      • 0ddfc5aea-fcdac-421-92dad-144/xml
      • ...
    • ImageSets/
      • Main/
        • train.txt
        • test.txt
        • val.txt
        • trainval.txt
    • JPEGImages/
      • 0d4c5e4f-fc3c-4d5a-906c-105.jpg
      • 0ddfc5aea-fcdac-421-92dad-144.jpg
      • ...
2.3 coco

此处未使用测试集

  • coco/
    • annotations/
      • instances_train2017.json
      • instances_val2017.json
    • images/
      • train2017/
        • 0d4c5e4f-fc3c-4d5a-906c-105.jpg
        • ...
      • val2017
        • 0ddfc5aea-fcdac-421-92dad-144.jpg
        • ...
2.4 labelme
  • labelme/
    • 0d4c5e4f-fc3c-4d5a-906c-105.json
    • 0d4c5e4f-fc3c-4d5a-906c-105.jpg
    • 0ddfc5aea-fcdac-421-92dad-144.json
    • 0ddfc5aea-fcdac-421-92dad-144.jpg

Json file 格式: (imageData那一块太长了,不展示了)

{
 "version": "3.6.16",
 "flags": {},
 "shapes": [
 {
 "label": "helmet",
 "line_color": null,
 "fill_color": null,
 "points": [
 [
 131,
 269
 ],
 [
 388,
 457
 ]
 ],
 "shape_type": "rectangle"
 }
 ],
 "lineColor": [
 0,
 255,
 0,
 128
 ],
 "fillColor": [
 255,
 0,
 0,
 128
 ],
 "imagePath": "004ffe6f-c3e2-3602-84a1-ecd5f437b113.jpg",
 "imageData": "" # too long ,so not show here
 "imageHeight": 1080,
 "imageWidth": 1920
}

3. 如何使用转换脚本

3.1 csv2coco

首先更改csv2coco.py中以下几个配置

classname_to_id = {"person": 1} # for your dataset classes
csv_file = "labels.csv" # annatations file path
image_dir = "images/" # original image path
saved_coco_path = "./" # path to save converted coco dataset

然后运行 python csv2coco.py

会自动创建文件夹并复制图片到相应位置,运行结束后得到如下:

  • coco/
    • annotations/
      • instances_train2017.json
      • instances_val2017.json
    • images/
      • train2017/
        • 0d4c5e4f-fc3c-4d5a-906c-105.jpg
        • ...
      • val2017
        • 0ddfc5aea-fcdac-421-92dad-144.jpg
        • ...
3.2 csv2voc

首先更改csv2voc.py中以下几个配置

csv_file = "labels.csv"
saved_path = ".VOC2007/" # path to save converted voc dataset 
image_save_path = "./JPEGImages/" # converted voc images path
image_raw_parh = "images/" # original image path

然后运行 python csv2voc.py

同样会自动创建文件夹并复制图片到相应位置,运行结束后得到如下:

  • VOC2007/
    • Annotations/
      • 0d4c5e4f-fc3c-4d5a-906c-105.xml
      • 0ddfc5aea-fcdac-421-92dad-144/xml
      • ...
    • ImageSets/
      • Main/
        • train.txt
        • test.txt
        • val.txt
        • trainval.txt
    • JPEGImages/
      • 0d4c5e4f-fc3c-4d5a-906c-105.jpg
      • 0ddfc5aea-fcdac-421-92dad-144.jpg
      • ...
3.3 labelme2coco

首先更改labelme2coco.py中以下几个配置

classname_to_id = {"person": 1} # for your dataset classes
labelme_path = "labelme/" # path for labelme dataset
saved_coco_path = "./" # path for saved coco dataset

然后运行 python labelme2coco.py,生成文件形式同csv2coco

3.4 labelme2voc

首先更改labelme2voc.py中以下几个配置

labelme_path = "labelme/" # path for labelme dataset
saved_coco_path = "./" # path for saved coco dataset

然后运行 python labelme2voc.py,生成文件形式同csv2voc

3.5 csv2labelme

首先更改csv2labelme.py中以下几个配置

image_path = "./images/" # path for images
csv_file = "./" # path for csv annotations

然后运行 python csv2labelme.py,生成的json文件会保存在image_path下,切换路径过去,直接labelme便 可以查看标签.

4. 万能中介csv

从上面的转换格式中可以看出,并没有给出如何转到csv的,一是因为太过于简单,而是主流检测框架很少支持这种格式的数据输入。以下给出如何将标注信息写入csv

info = [[filename0,"xmin ymin xmax ymax label0"],
 filename1,"xmin ymin xmax ymax label1"]
csv_labels = open("csv_labels.csv","w")
for filename,bboxes in info:
 bbox = bboxes.split(" ")
 label = bbox[-1]
 csv_labels.write(filename+","+bbox[0]+","+bbox[1]+","+bbox[2]+","+bbox[3]+","+label+"\n")
csv_labels.close()

是不是非常简单。。。如果你不知道如何从原始的标签文件中读取得到标注信息,那没办法了,学学编程吧,23333

TODO

    1. Multiprocessing

致谢

感谢这么久以来对本项目支持的各位大佬!

Stargazers repo roster for @spytensor/prepare_detection_dataset

About

convert dataset to coco/voc format

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

AltStyle によって変換されたページ (->オリジナル) /