Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

ropensci/tidyhydat

tidyhydat

License R build status

CRAN_Status_Badge CRAN Downloads cran checks r-universe DOI DOI

What does tidyhydat do?

  • Provides functions (hy_*) that access hydrometric data from the HYDAT database, a national archive of Canadian hydrometric data and return tidy data.
  • Provides functions (realtime_*) that access Environment and Climate Change Canada’s real-time hydrometric data source.
  • Provides functions (search_*) that can search through the approximately 7000 stations in the database and aid in generating station vectors
  • Keep functions as simple as possible. For example, for daily flows, the hy_daily_flows() function queries the database, tidies the data and returns a tibble of daily flows.

Installation

You can install tidyhydat from CRAN:

install.packages("tidyhydat")

To install the development version of the tidyhydat package, you can install directly from the rOpenSci development server:

install.packages("tidyhydat", repos = "https://dev.ropensci.org")

Usage

More documentation on tidyhydat can found at the rOpenSci doc page: https://docs.ropensci.org/tidyhydat/

When you install tidyhydat, several other packages will be installed as well. One of those packages, dplyr, is useful for data manipulations and is used regularly here. To use actually use dplyr in a session you must explicitly load it. A helpful dplyr tutorial can be found here.

library(tidyhydat)
library(dplyr)

HYDAT download

To use many of the functions in the tidyhydat package you will need to download a version of the HYDAT database, Environment and Climate Change Canada’s database of historical hydrometric data then tell R where to find the database. Conveniently tidyhydat does all this for you via:

download_hydat()

This downloads (with your permission) the most recent version of HYDAT and then saves it in a location on your computer where tidyhydat’s function will look for it. Do be patient though as this can take a long time! To see where HYDAT was saved you can run hy_default_db(). Now that you have HYDAT downloaded and ready to go, you are all set to begin looking at Canadian hydrometric data.

Real-time

To download real-time data using the datamart we can use approximately the same conventions discussed above. Using realtime_dd() we can easily select specific stations by supplying a station of interest:

×ばつ 8 #> STATION_NUMBER PROV_TERR_STATE_LOC Date Parameter Value Grade #> <chr> <chr> <dttm> <chr> <dbl> <chr> #> 1 08MF005 BC 2025-02-09 08:00:00 Flow 612 <NA> #> 2 08MF005 BC 2025-02-09 08:05:00 Flow 612 <NA> #> 3 08MF005 BC 2025-02-09 08:10:00 Flow 613 <NA> #> 4 08MF005 BC 2025-02-09 08:15:00 Flow 611 <NA> #> 5 08MF005 BC 2025-02-09 08:20:00 Flow 611 <NA> #> 6 08MF005 BC 2025-02-09 08:25:00 Flow 611 <NA> #> 7 08MF005 BC 2025-02-09 08:30:00 Flow 610 <NA> #> 8 08MF005 BC 2025-02-09 08:35:00 Flow 611 <NA> #> 9 08MF005 BC 2025-02-09 08:40:00 Flow 611 <NA> #> 10 08MF005 BC 2025-02-09 08:45:00 Flow 611 <NA> #> # i 17,510 more rows #> # i 2 more variables: Symbol <chr>, Code <chr>">
realtime_dd(station_number = "08MF005")
#> Queried on: 2025年03月11日 19:53:39.321743 (UTC)
#> Date range: 2025年02月09日 to 2025年03月11日 
#> # A tibble: 17,520 ×ばつ 8
#> STATION_NUMBER PROV_TERR_STATE_LOC Date Parameter Value Grade
#> <chr> <chr> <dttm> <chr> <dbl> <chr>
#> 1 08MF005 BC 2025年02月09日 08:00:00 Flow 612 <NA> 
#> 2 08MF005 BC 2025年02月09日 08:05:00 Flow 612 <NA> 
#> 3 08MF005 BC 2025年02月09日 08:10:00 Flow 613 <NA> 
#> 4 08MF005 BC 2025年02月09日 08:15:00 Flow 611 <NA> 
#> 5 08MF005 BC 2025年02月09日 08:20:00 Flow 611 <NA> 
#> 6 08MF005 BC 2025年02月09日 08:25:00 Flow 611 <NA> 
#> 7 08MF005 BC 2025年02月09日 08:30:00 Flow 610 <NA> 
#> 8 08MF005 BC 2025年02月09日 08:35:00 Flow 611 <NA> 
#> 9 08MF005 BC 2025年02月09日 08:40:00 Flow 611 <NA> 
#> 10 08MF005 BC 2025年02月09日 08:45:00 Flow 611 <NA> 
#> # i 17,510 more rows
#> # i 2 more variables: Symbol <chr>, Code <chr>

Or we can use realtime_ws:

×ばつ 12 #> STATION_NUMBER Date Name_En Value Unit Grade Symbol Approval #> <chr> <dttm> <chr> <dbl> <chr> <lgl> <chr> <chr> #> 1 08MF005 2025-02-25 00:00:00 Water t... 4.46 °C NA <NA> Provisi... #> 2 08MF005 2025-02-25 01:00:00 Water t... 4.48 °C NA <NA> Provisi... #> 3 08MF005 2025-02-25 02:00:00 Water t... 4.49 °C NA <NA> Provisi... #> 4 08MF005 2025-02-25 03:00:00 Water t... 4.48 °C NA <NA> Provisi... #> 5 08MF005 2025-02-25 04:00:00 Water t... 4.5 °C NA <NA> Provisi... #> 6 08MF005 2025-02-25 05:00:00 Water t... 4.51 °C NA <NA> Provisi... #> 7 08MF005 2025-02-25 06:00:00 Water t... 4.52 °C NA <NA> Provisi... #> 8 08MF005 2025-02-25 07:00:00 Water t... 4.52 °C NA <NA> Provisi... #> 9 08MF005 2025-02-25 08:00:00 Water t... 4.55 °C NA <NA> Provisi... #> 10 08MF005 2025-02-25 09:00:00 Water t... 4.54 °C NA <NA> Provisi... #> # i 4,592 more rows #> # i 4 more variables: Parameter <dbl>, Code <chr>, Qualifier <chr>, #> # Qualifiers <lgl>">
realtime_ws(
 station_number = "08MF005",
 parameters = c(46, 5), ## see param_id for a list of codes
 start_date = Sys.Date() - 14,
 end_date = Sys.Date()
)
#> All station successfully retrieved
#> All parameters successfully retrieved
#> # A tibble: 4,602 ×ばつ 12
#> STATION_NUMBER Date Name_En Value Unit Grade Symbol Approval
#> <chr> <dttm> <chr> <dbl> <chr> <lgl> <chr> <chr> 
#> 1 08MF005 2025年02月25日 00:00:00 Water t... 4.46 °C NA <NA> Provisi...
#> 2 08MF005 2025年02月25日 01:00:00 Water t... 4.48 °C NA <NA> Provisi...
#> 3 08MF005 2025年02月25日 02:00:00 Water t... 4.49 °C NA <NA> Provisi...
#> 4 08MF005 2025年02月25日 03:00:00 Water t... 4.48 °C NA <NA> Provisi...
#> 5 08MF005 2025年02月25日 04:00:00 Water t... 4.5 °C NA <NA> Provisi...
#> 6 08MF005 2025年02月25日 05:00:00 Water t... 4.51 °C NA <NA> Provisi...
#> 7 08MF005 2025年02月25日 06:00:00 Water t... 4.52 °C NA <NA> Provisi...
#> 8 08MF005 2025年02月25日 07:00:00 Water t... 4.52 °C NA <NA> Provisi...
#> 9 08MF005 2025年02月25日 08:00:00 Water t... 4.55 °C NA <NA> Provisi...
#> 10 08MF005 2025年02月25日 09:00:00 Water t... 4.54 °C NA <NA> Provisi...
#> # i 4,592 more rows
#> # i 4 more variables: Parameter <dbl>, Code <chr>, Qualifier <chr>,
#> # Qualifiers <lgl>

Compare realtime_ws and realtime_dd

tidyhydat provides two methods to download realtime data. realtime_dd() provides a function to import .csv files from here. realtime_ws() is an client for a web service hosted by ECCC. realtime_ws() has several difference to realtime_dd(). These include:

  • Speed: The realtime_ws() is much faster for larger queries (i.e. many stations). For single station queries to realtime_dd() is more appropriate.
  • Length of record: realtime_ws() records goes back further in time.
  • Type of parameters: realtime_dd() are restricted to river flow (either flow and level) data. In contrast realtime_ws() can download several different parameters depending on what is available for that station. See data("param_id") for a list and explanation of the parameters.
  • Date/Time filtering: realtime_ws() provides argument to select a date range. Selecting a data range with realtime_dd() is not possible until after all files have been downloaded.

Plotting

Plot methods are also provided to quickly visualize realtime data:

realtime_ex <- realtime_dd(station_number = "08MF005")
plot(realtime_ex)

and also historical data:

hy_ex <- hy_daily_flows(station_number = "08MF005", start_date = "2013-01-01")
plot(hy_ex)

Getting Help or Reporting an Issue

To report bugs/issues/feature requests, please file an issue.

These are very welcome!

How to Contribute

If you would like to contribute to the package, please see our CONTRIBUTING guidelines.

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

Citation

Get citation information for tidyhydat in R by running:

To cite package 'tidyhydat' in publications use:
 Albers S (2017). "tidyhydat: Extract and Tidy Canadian Hydrometric
 Data." _The Journal of Open Source Software_, *2*(20).
 doi:10.21105/joss.00511 <https://doi.org/10.21105/joss.00511>,
 <http://dx.doi.org/10.21105/joss.00511>.
A BibTeX entry for LaTeX users is
 @Article{,
 title = {tidyhydat: Extract and Tidy Canadian Hydrometric Data},
 author = {Sam Albers},
 doi = {10.21105/joss.00511},
 url = {http://dx.doi.org/10.21105/joss.00511},
 year = {2017},
 publisher = {The Open Journal},
 volume = {2},
 number = {20},
 journal = {The Journal of Open Source Software},
 }

ropensci_footer

License

Copyright 2017 Province of British Columbia

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

About

An R package to import Water Survey of Canada hydrometric data and make it tidy

Topics

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 11

AltStyle によって変換されたページ (->オリジナル) /