Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

psalias2006/gpu-hot

Repository files navigation

GPU Hot

Real-time NVIDIA GPU monitoring dashboard. Web-based, no SSH required.

Python Docker License: MIT NVIDIA

GPU Hot Dashboard

Usage

Monitor a single machine or an entire cluster with the same Docker image.

Single machine:

docker run -d --gpus all -p 1312:1312 ghcr.io/psalias2006/gpu-hot:latest

Multiple machines:

# On each GPU server
docker run -d --gpus all -p 1312:1312 -e NODE_NAME=$(hostname) ghcr.io/psalias2006/gpu-hot:latest
# On a hub machine (no GPU required)
docker run -d -p 1312:1312 -e GPU_HOT_MODE=hub -e NODE_URLS=http://server1:1312,http://server2:1312,http://server3:1312 ghcr.io/psalias2006/gpu-hot:latest

Open http://localhost:1312

Older GPUs: Add -e NVIDIA_SMI=true if metrics don't appear.

From source:

git clone https://github.com/psalias2006/gpu-hot
cd gpu-hot
docker-compose up --build

Requirements: Docker + NVIDIA Container Toolkit


Features

  • Real-time metrics (sub-second)
  • Automatic multi-GPU detection
  • Process monitoring (PID, memory usage)
  • Historical charts (utilization, temperature, power, clocks)
  • System metrics (CPU, RAM)
  • Scale from 1 to 100+ GPUs

Metrics: Utilization, temperature, memory, power draw, fan speed, clock speeds, PCIe info, P-State, throttle status, encoder/decoder sessions


Configuration

Environment variables:

NVIDIA_VISIBLE_DEVICES=0,1 # Specific GPUs (default: all)
NVIDIA_SMI=true # Force nvidia-smi mode for older GPUs
GPU_HOT_MODE=hub # Set to 'hub' for multi-node aggregation (default: single node)
NODE_NAME=gpu-server-1 # Node display name (default: hostname)
NODE_URLS=http://host:1312... # Comma-separated node URLs (required for hub mode)

Backend (core/config.py):

UPDATE_INTERVAL = 0.5 # Polling interval
PORT = 1312 # Server port

API

HTTP

GET / # Dashboard
GET /api/gpu-data # JSON metrics

WebSocket

socket.on('gpu_data', (data) => {
 // Updates every 0.5s (configurable)
 // Contains: data.gpus, data.processes, data.system
});

Project Structure

gpu-hot/
β”œβ”€β”€ app.py # Flask + WebSocket server
β”œβ”€β”€ core/
β”‚ β”œβ”€β”€ config.py # Configuration
β”‚ β”œβ”€β”€ monitor.py # NVML GPU monitoring
β”‚ β”œβ”€β”€ handlers.py # WebSocket handlers
β”‚ β”œβ”€β”€ routes.py # HTTP routes
β”‚ └── metrics/
β”‚ β”œβ”€β”€ collector.py # Metrics collection
β”‚ └── utils.py # Metric utilities
β”œβ”€β”€ static/
β”‚ β”œβ”€β”€ js/
β”‚ β”‚ β”œβ”€β”€ charts.js # Chart configs
β”‚ β”‚ β”œβ”€β”€ gpu-cards.js # UI components
β”‚ β”‚ β”œβ”€β”€ socket-handlers.js # WebSocket + rendering
β”‚ β”‚ β”œβ”€β”€ ui.js # View management
β”‚ β”‚ └── app.js # Init
β”‚ └── css/styles.css
β”œβ”€β”€ templates/index.html
β”œβ”€β”€ Dockerfile
└── docker-compose.yml

Troubleshooting

No GPUs detected:

nvidia-smi # Verify drivers work
docker run --rm --gpus all nvidia/cuda:12.1.0-base-ubuntu22.04 nvidia-smi # Test Docker GPU access

Hub can't connect to nodes:

curl http://node-ip:1312/api/gpu-data # Test connectivity
sudo ufw allow 1312/tcp # Check firewall

Performance issues: Increase UPDATE_INTERVAL in core/config.py


Contributing

PRs welcome. Open an issue for major changes.

License

MIT - see LICENSE

AltStyle γ«γ‚ˆγ£γ¦ε€‰ζ›γ•γ‚ŒγŸγƒšγƒΌγ‚Έ (->γ‚ͺγƒͺγ‚ΈγƒŠγƒ«) /