Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

jasmcaus/opencv-course

Repository files navigation

OpenCV with Python in 4 Hours

Notes and code used in my Python and OpenCV course on freeCodeCamp.org. You can find me on Twitter for more info on courses I'm working on currently.

Important Updates:

caer.train_val_split() is a deprecated feature in caer. Use sklearn.model_selection.train_test_split() instead. See #9 for more details.

Course Outline (with timestamps)

1. Installation

Besides installing OpenCV, we cover the installation of the following package:

Caer is a lightweight, high-performance Vision library for high-performance AI research. It simplifies your approach towards Computer Vision by abstracting away unnecessary boilerplate code giving you the flexibility to quickly prototype deep learning models and research ideas.

$ pip install caer

2. Basic Concepts:

  • Reading Images and Video (0:04:12)
  • Resizing and Rescaling Images and Video Frames (0:12:57)
  • Drawing Shapes and Placing text on images (0:20:21)
  • 5 Essential Methods in OpenCV (0:31:55)
  • Image Transformations (0:44:13)
  • Contour Detection (0:57:06)

3. Advanced Concepts:

  • Switching between Colour Spaces (RGB, BGR, Grayscale, HSV and Lab) (1:12:53)
  • Splitting and Merging Colour Channels (1:23:10)
  • Blurring (1:31:03)
  • BITWISE operations (1:44:27)
  • Masking (1:53:06)
  • Histogram Computation (2:01:43)
  • Thresholding/Binarizing Images (2:15:22)
  • Advanced Edge Detection (2:26:27)

4. Face Detection and Recognition

  • Face Detection using Haar Cascades (2:35:25)
  • Face Recognition using OpenCV's LBPHFaceRecognizer algorithm (2:49:05)

5. Capstone: Deep Computer Vision

  • Building a Deep Computer Vision model to classify between the characters in the popular TV series The Simpsons (3:11:57)

Credits

The images in the Photos and Videos folders were downloaded from Unsplash and Pixabay, unless otherwise mentioned.

The images in the Faces folder were procurred from a repo on Kaggle.

AltStyle によって変換されたページ (->オリジナル) /