Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

chonyy/apriori_python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

17 Commits

Repository files navigation

Getting Started

Install the Pypi package using pip

pip install apriori_python

Then use it like

from apriori_python import apriori
itemSetList = [['eggs', 'bacon', 'soup'],
 ['eggs', 'bacon', 'apple'],
 ['soup', 'bacon', 'banana']]
freqItemSet, rules = apriori(itemSetList, minSup=0.5, minConf=0.5)
print(freqItemSet)
print(rules) 
# [[{'beer'}, {'rice'}, 0.6666666666666666], [{'rice'}, {'beer'}, 1.0]]
# rules[0] --> rules[1], confidence = rules[2]

Clone the repo

Get a copy of this repo using git clone

git clone https://github.com/chonyy/apriori_python.git

Run the program with dataset provided and default values for minSupport = 0.5 and minConfidence = 0.5

python apriori.py -f dataset.csv

Run program with dataset and min support and min confidence

python apriori.py -f ../dataset/tesco2.csv -s 0.5 -c 0.5

Concepts of Apriori

  • Support: Fraction of transactions that contain an itemset
  • Confidence: Measures how often items in Y appear in transactions that contain X
  • Frequent itemset: An itemset whose support is greater than or equal to a minSup threshold

AltStyle γ«γ‚ˆγ£γ¦ε€‰ζ›γ•γ‚ŒγŸγƒšγƒΌγ‚Έ (->γ‚ͺγƒͺγ‚ΈγƒŠγƒ«) /