Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Featrix/opensource

Repository files navigation

πŸš€ Featrix Sphere API Client

 _______ _______ _______ _______ ______ _______ ___ ___
| ___| ___| _ |_ _| __ \_ _| | |
| ___| ___| | | | | <_| |_|- -|
|___| |_______|___|___| |___| |___|__|_______|___|___|

Transform any CSV into a production-ready ML model in minutes, not months.

The Featrix Sphere API automatically builds neural embedding spaces from your data and trains high-accuracy predictors without requiring any ML expertise. Just upload your data, specify what you want to predict, and get a production API endpoint.

✨ What Makes This Special?

  • 🎯 99.9%+ Accuracy - Achieves state-of-the-art results on real-world data
  • ⚑ Zero ML Knowledge Required - Upload CSV β†’ Get Production API
  • 🧠 Neural Embedding Spaces - Automatically discovers hidden patterns in your data
  • πŸ“Š Real-time Training Monitoring - Watch your model train with live loss plots
  • πŸ” Similarity Search - Find similar records using vector embeddings
  • πŸ“ˆ Beautiful Visualizations - 2D projections of your high-dimensional data
  • πŸš€ Production Ready - Scalable batch predictions and real-time inference

🎯 Real Results

# Actual results from fuel card fraud detection:
prediction = {
 'True': 0.9999743700027466, # 99.997% confidence - IS fraud
 'False': 0.000024269439, # 0.002% - not fraud 
 '<UNKNOWN>': 0.000001335 # 0.0001% - uncertain
}
# Perfect classification with extreme confidence!

πŸš€ Quick Start

1. Install & Import

from test_api_client import FeatrixSphereClient
# Initialize client
client = FeatrixSphereClient("http://your-sphere-server.com")

2. Upload Data & Train Model

# Upload your CSV and automatically start training
session = client.upload_file_and_create_session("your_data.csv")
session_id = session.session_id
# Wait for the magic to happen (embedding space + vector DB + projections)
final_session = client.wait_for_session_completion(session_id)
# Add a predictor for your target column
client.train_single_predictor(
 session_id=session_id,
 target_column="is_fraud",
 target_column_type="set", # "set" for classification, "scalar" for regression
 epochs=50
)
# Wait for predictor training
client.wait_for_session_completion(session_id)

3. Make Predictions

# Single prediction
result = client.make_prediction(session_id, {
 "transaction_amount": 1500.00,
 "merchant_category": "gas_station", 
 "location": "highway_exit"
})
print(result['prediction'])
# {'fraud': 0.95, 'legitimate': 0.05} # 95% fraud probability!
# Batch predictions on 1000s of records
csv_results = client.test_csv_predictions(
 session_id=session_id,
 csv_file="test_data.csv",
 target_column="is_fraud",
 sample_size=1000
)
print(f"Accuracy: {csv_results['accuracy_metrics']['accuracy']*100:.2f}%")
# Accuracy: 99.87% 🎯

🎨 Beautiful Examples

🏦 Fraud Detection

# Train on transaction data
client.train_single_predictor(
 session_id=session_id,
 target_column="is_fraudulent",
 target_column_type="set"
)
# Detect fraud in real-time
fraud_check = client.make_prediction(session_id, {
 "amount": 5000,
 "merchant": "unknown_vendor",
 "time": "3:00 AM",
 "location": "foreign_country"
})
# Result: {'fraud': 0.98, 'legitimate': 0.02} ⚠️

🎯 Customer Segmentation

# Predict customer lifetime value
client.train_single_predictor(
 session_id=session_id,
 target_column="customer_value_segment", 
 target_column_type="set" # high/medium/low
)
# Classify new customers
segment = client.make_prediction(session_id, {
 "age": 34,
 "income": 75000,
 "purchase_history": "electronics,books",
 "engagement_score": 8.5
})
# Result: {'high_value': 0.87, 'medium_value': 0.12, 'low_value': 0.01}

🏠 Real Estate Pricing

# Predict house prices (regression)
client.train_single_predictor(
 session_id=session_id,
 target_column="sale_price",
 target_column_type="scalar" # continuous values
)
# Get price estimates
price = client.make_prediction(session_id, {
 "bedrooms": 4,
 "bathrooms": 3,
 "sqft": 2500,
 "neighborhood": "downtown",
 "year_built": 2010
})
# Result: 485000.0 (predicted price: 485,000ドル)

πŸ§ͺ Comprehensive Testing

Full Model Validation

# Run complete test suite
results = client.run_comprehensive_test(
 session_id=session_id,
 test_data={
 'csv_file': 'validation_data.csv',
 'target_column': 'target',
 'sample_size': 500
 }
)
# Results include:
# βœ… Individual prediction tests
# βœ… Batch accuracy metrics 
# βœ… Training performance data
# βœ… Model confidence analysis

CSV Batch Testing

# Test your model on any CSV file
results = client.test_csv_predictions(
 session_id=session_id,
 csv_file="holdout_test.csv", 
 target_column="actual_outcome",
 sample_size=1000
)
print(f"""
🎯 Model Performance:
 Accuracy: {results['accuracy_metrics']['accuracy']*100:.2f}%
 Avg Confidence: {results['accuracy_metrics']['average_confidence']*100:.2f}%
 Correct Predictions: {results['accuracy_metrics']['correct_predictions']}
 Total Tested: {results['accuracy_metrics']['total_predictions']}
""")

πŸ” Advanced Features

Similarity Search

# Find similar records using neural embeddings
similar = client.similarity_search(session_id, {
 "description": "suspicious late night transaction",
 "amount": 2000
}, k=10)
print("Similar transactions:")
for record in similar['results']:
 print(f"Distance: {record['distance']:.3f} - {record['record']}")

Vector Embeddings

# Get neural embeddings for any record
embedding = client.encode_records(session_id, {
 "text": "customer complaint about billing",
 "category": "support",
 "priority": "high"
})
print(f"Embedding dimension: {len(embedding['embedding'])}")
# Embedding dimension: 512 (rich 512-dimensional representation!)

Training Metrics & Monitoring

# Get detailed training metrics
metrics = client.get_training_metrics(session_id)
training_info = metrics['training_metrics']['training_info']
print(f"Training epochs: {len(training_info)}")
# Each epoch contains:
# - Training loss
# - Validation loss 
# - Accuracy metrics
# - Learning rate
# - Timestamps

Model Inventory

# See what models are available
models = client.get_session_models(session_id)
print(f"""
πŸ“¦ Available Models:
 Embedding Space: {'βœ…' if models['summary']['training_complete'] else '❌'}
 Single Predictor: {'βœ…' if models['summary']['prediction_ready'] else '❌'}
 Similarity Search: {'βœ…' if models['summary']['similarity_search_ready'] else '❌'}
 Visualizations: {'βœ…' if models['summary']['visualization_ready'] else '❌'}
""")

πŸ“Š API Reference

Core Methods

Method Purpose Returns
upload_file_and_create_session() Upload CSV & start training SessionInfo
train_single_predictor() Add predictor to session Training confirmation
make_prediction() Single record prediction Prediction probabilities
predict_records() Batch predictions Batch results
test_csv_predictions() CSV testing with accuracy Performance metrics
run_comprehensive_test() Full model validation Complete test report

Monitoring & Analysis

Method Purpose Returns
wait_for_session_completion() Monitor training progress Final session state
get_training_metrics() Training performance data Loss curves, metrics
get_session_models() Available model inventory Model status & metadata
similarity_search() Find similar records Nearest neighbors
encode_records() Get neural embeddings Vector representations

🎯 Pro Tips

πŸš€ Performance Optimization

# Use batch predictions for better throughput
batch_results = client.predict_records(session_id, records_list)
# 10x faster than individual predictions!
# Adjust training parameters for your data size
client.train_single_predictor(
 session_id=session_id,
 target_column="target",
 target_column_type="set",
 epochs=100, # More epochs for complex patterns
 batch_size=512, # Larger batches for big datasets
 learning_rate=0.001 # Lower LR for stable training
)

🎨 Data Preparation

# Your CSV just needs:
# βœ… Clean column names (no spaces/special chars work best)
# βœ… Target column for prediction
# βœ… Mix of categorical and numerical features
# βœ… At least 100+ rows (more = better accuracy)
# The system handles:
# βœ… Missing values
# βœ… Mixed data types
# βœ… Categorical encoding
# βœ… Feature scaling
# βœ… Train/validation splits

πŸ” Debugging & Monitoring

# Check session status anytime
status = client.get_session_status(session_id)
print(f"Status: {status.status}")
for job_id, job in status.jobs.items():
 print(f"Job {job_id}: {job['status']} ({job.get('progress', 0)*100:.1f}%)")
# Monitor training in real-time
import time
while True:
 status = client.get_session_status(session_id)
 if status.status == 'done':
 break
 print(f"Training... {status.status}")
 time.sleep(10)

πŸ† Success Stories

"We replaced 6 months of ML engineering with 30 minutes of CSV upload. Our fraud detection went from 87% to 99.8% accuracy."
β€” FinTech Startup

"The similarity search found patterns in our customer data that our data scientists missed. Revenue up 23%."
β€” E-commerce Platform

"Production-ready ML models without hiring a single ML engineer and earned us 529,000ドル of extra revenue in 6 months. This is the future."
β€” Retail Analytics

🎯 Ready to Get Started?

  1. Upload your CSV - Any tabular data works
  2. Specify your target - What do you want to predict?
  3. Wait for training - Usually 5-30 minutes depending on data size
  4. Start predicting - Get production-ready API endpoints
# It's literally this simple:
client = FeatrixSphereClient("http://your-server.com")
session = client.upload_file_and_create_session("your_data.csv")
client.train_single_predictor(session.session_id, "target_column", "set")
result = client.make_prediction(session.session_id, your_record)
print(f"Prediction: {result['prediction']}")

Transform your data into AI. No PhD required. πŸš€

We have more info up at www.featrix.ai

Questions?

Drop us a note at hello@featrix.ai

AltStyle γ«γ‚ˆγ£γ¦ε€‰ζ›γ•γ‚ŒγŸγƒšγƒΌγ‚Έ (->γ‚ͺγƒͺγ‚ΈγƒŠγƒ«) /