This repository contains a curated list of JavaScript algorithms, organized by category. These range from simple string manipulation to advanced searching and sorting techniques β perfect for interviews and foundational learning.
Note
Popularity is based on common interview topics, educational materials, and developer community usage.
- Prime Number Check
- Fibonacci Sequence (Recursive)
- Factorial of a Number
- Find the GCD (Greatest Common Divisor)
/** * Reverses a string * @param {string} str - The string to reverse * @returns {string} The reversed string */ function reverseString(str) { if (typeof str !== "string") throw new TypeError("Input must be a string"); return [...str].reverse().join(""); } console.log(reverseString("hello")); // Output: "olleh"
Explanation: Reverses the characters in a string using the spread operator (modern alternative to split) and reverse. Includes type validation.
/** * Checks if a string is a palindrome (case-insensitive, ignores spaces) * @param {string} str - The string to check * @returns {boolean} True if palindrome, false otherwise */ function isPalindrome(str) { if (typeof str !== "string") throw new TypeError("Input must be a string"); const cleaned = str.toLowerCase().replace(/\s+/g, ""); return cleaned === [...cleaned].reverse().join(""); } console.log(isPalindrome("racecar")); // Output: true console.log(isPalindrome("A man a plan a canal Panama")); // Output: true
Explanation: Determines if a string reads the same backward as forward. Now handles case-insensitivity and ignores spaces for real-world usage.
/** * Counts the frequency of each character in a string * @param {string} str - The string to analyze * @returns {Object} An object with characters as keys and frequencies as values */ function charFrequency(str) { if (typeof str !== "string") throw new TypeError("Input must be a string"); return [...str].reduce((freq, char) => { freq[char] = (freq[char] ?? 0) + 1; return freq; }, {}); } console.log(charFrequency("hello")); // Output: { h: 1, e: 1, l: 2, o: 1 }
Explanation: Counts how often each character appears in a string using modern reduce() and nullish coalescing (??). More functional approach.
/** * Determines if two strings are anagrams (ignores case and spaces) * @param {string} str1 - First string * @param {string} str2 - Second string * @returns {boolean} True if anagrams, false otherwise */ function isAnagram(str1, str2) { if (typeof str1 !== "string" || typeof str2 !== "string") { throw new TypeError("Both inputs must be strings"); } const normalize = (str) => [...str.toLowerCase().replace(/\s+/g, "")].sort().join(""); return normalize(str1) === normalize(str2); } console.log(isAnagram("listen", "silent")); // Output: true console.log(isAnagram("The Eyes", "They See")); // Output: true
Explanation: Determines if two strings are anagrams by normalizing case/spaces and comparing sorted characters. Handles real-world edge cases.
/** * Checks if a number is prime * @param {number} num - The number to check * @returns {boolean} True if prime, false otherwise */ function isPrime(num) { if (!Number.isInteger(num)) throw new TypeError("Input must be an integer"); if (num <= 1) return false; if (num <= 3) return true; if (num % 2 === 0 || num % 3 === 0) return false; for (let i = 5; i * i <= num; i += 6) { if (num % i === 0 || num % (i + 2) === 0) return false; } return true; } console.log(isPrime(7)); // Output: true
Explanation: Checks if a number is prime using an optimized approach with integer validation. Eliminates multiples of 2 and 3 for efficiency.
/** * Generates the nth Fibonacci number using memoization * @param {number} n - The position in Fibonacci sequence * @param {Map} memo - Cache for memoization * @returns {number} The nth Fibonacci number */ function fibonacci(n, memo = new Map()) { if (!Number.isInteger(n) || n < 0) { throw new TypeError("Input must be a non-negative integer"); } if (n <= 1) return n; if (memo.has(n)) return memo.get(n); const result = fibonacci(n - 1, memo) + fibonacci(n - 2, memo); memo.set(n, result); return result; } console.log(fibonacci(6)); // Output: 8 console.log(fibonacci(50)); // Output: 12586269025 (efficient with memoization)
Explanation: Generates the nth Fibonacci number recursively with memoization for efficiency. Solves the exponential time complexity problem of naive recursion. Time complexity: O(n) instead of O(2^n).
/** * Calculates the factorial of a number * @param {number} n - The number to calculate factorial for * @returns {number} The factorial of n */ function factorial(n) { if (!Number.isInteger(n)) throw new TypeError("Input must be an integer"); if (n < 0) throw new RangeError("Factorial is not defined for negative numbers"); if (n === 0 || n === 1) return 1; return n * factorial(n - 1); } console.log(factorial(5)); // Output: 120
Explanation: Calculates the factorial of a number recursively with comprehensive input validation using modern type-checking.
/** * Finds the greatest common divisor using Euclidean algorithm * @param {number} a - First number * @param {number} b - Second number * @returns {number} The GCD of a and b */ function gcd(a, b) { if (!Number.isInteger(a) || !Number.isInteger(b)) { throw new TypeError("Both inputs must be integers"); } a = Math.abs(a); b = Math.abs(b); return b === 0 ? a : gcd(b, a % b); } console.log(gcd(48, 18)); // Output: 6 console.log(gcd(-48, 18)); // Output: 6
Explanation: Uses the Euclidean algorithm with support for negative numbers and type validation.
/** * Finds two indices in array whose values sum to target * @param {number[]} nums - Array of numbers * @param {number} target - Target sum * @returns {number[]} Array of two indices, or empty array if not found */ function twoSum(nums, target) { if (!Array.isArray(nums) || typeof target !== "number") { throw new TypeError("Input must be an array and a number"); } const map = new Map(); for (let i = 0; i < nums.length; i++) { const complement = target - nums[i]; if (map.has(complement)) return [map.get(complement), i]; map.set(nums[i], i); } return []; } console.log(twoSum([2, 7, 11, 15], 9)); // Output: [0, 1]
Explanation: Finds two indices whose values sum to target using a Map (hash map) for O(n) time complexity. Includes input validation.
/** * Searches for target in a sorted array using binary search * @param {number[]} arr - Sorted array to search in * @param {number} target - Value to search for * @returns {number} Index of target, or -1 if not found */ function binarySearch(arr, target) { if (!Array.isArray(arr) || typeof target !== "number") { throw new TypeError("Input must be an array and a number"); } let left = 0, right = arr.length - 1; while (left <= right) { const mid = left + Math.floor((right - left) / 2); if (arr[mid] === target) return mid; if (arr[mid] < target) left = mid + 1; else right = mid - 1; } return -1; } console.log(binarySearch([1, 2, 3, 4, 5], 4)); // Output: 3
Explanation: Searches for target in sorted array using divide-and-conquer. Uses left + Math.floor((right - left) / 2) to avoid overflow issues.
/** * Sorts an array using bubble sort algorithm * @param {number[]} arr - Array to sort * @returns {number[]} Sorted array */ function bubbleSort(arr) { if (!Array.isArray(arr)) throw new TypeError("Input must be an array"); const sorted = [...arr]; // Create copy to avoid mutating original for (let i = 0; i < sorted.length; i++) { for (let j = 0; j < sorted.length - i - 1; j++) { if (sorted[j] > sorted[j + 1]) { [sorted[j], sorted[j + 1]] = [sorted[j + 1], sorted[j]]; } } } return sorted; } console.log(bubbleSort([5, 3, 8, 4, 2])); // Output: [2, 3, 4, 5, 8]
Explanation: Sorts an array by repeatedly swapping adjacent elements. Modern version uses array spread to avoid mutating the original array.
/** * Sorts an array using quick sort algorithm * @param {number[]} arr - Array to sort * @returns {number[]} Sorted array */ function quickSort(arr) { if (!Array.isArray(arr)) throw new TypeError("Input must be an array"); if (arr.length <= 1) return arr; const pivot = arr[Math.floor(arr.length / 2)]; const left = arr.filter((x) => x < pivot); const middle = arr.filter((x) => x === pivot); const right = arr.filter((x) => x > pivot); return [...quickSort(left), ...middle, ...quickSort(right)]; } console.log(quickSort([3, 6, 8, 10, 1, 2, 1])); // Output: [1, 1, 2, 3, 6, 8, 10]
Explanation: A divide-and-conquer sorting algorithm with O(n log n) average-case complexity. Uses middle pivot to handle duplicates better, and maintains immutability.
/** * Merges two sorted arrays into one sorted array * @param {number[]} arr1 - First sorted array * @param {number[]} arr2 - Second sorted array * @returns {number[]} Merged sorted array */ function mergeSortedArrays(arr1, arr2) { if (!Array.isArray(arr1) || !Array.isArray(arr2)) { throw new TypeError("Both inputs must be arrays"); } const merged = []; let i = 0, j = 0; while (i < arr1.length && j < arr2.length) { if (arr1[i] < arr2[j]) { merged.push(arr1[i++]); } else { merged.push(arr2[j++]); } } return [...merged, ...arr1.slice(i), ...arr2.slice(j)]; } console.log(mergeSortedArrays([1, 3, 5], [2, 4, 6])); // Output: [1, 2, 3, 4, 5, 6]
Explanation: Merges two sorted arrays efficiently in O(n + m) time. Modern syntax with spread operator.
/** * Finds the maximum value in an array * @param {number[]} arr - Array to search * @returns {number} The maximum value */ function findMax(arr) { if (!Array.isArray(arr) || arr.length === 0) { throw new TypeError("Input must be a non-empty array"); } return Math.max(...arr); } // Alternative for very large arrays (avoids stack overflow): function findMaxAlternative(arr) { if (!Array.isArray(arr) || arr.length === 0) { throw new TypeError("Input must be a non-empty array"); } return arr.reduce((max, current) => (current > max ? current : max)); } console.log(findMax([1, 2, 3, 4, 5])); // Output: 5
Explanation: Finds the largest number. Now includes validation and an alternative using reduce() for very large arrays to avoid stack overflow from spread operator.
/** * Creates a debounced function that delays execution * @param {Function} fn - Function to debounce * @param {number} delay - Delay in milliseconds * @returns {Function} Debounced function */ function debounce(fn, delay) { if (typeof fn !== "function" || typeof delay !== "number") { throw new TypeError("First argument must be a function, second a number"); } let timerId; return function (...args) { clearTimeout(timerId); timerId = setTimeout(() => fn.apply(this, args), delay); }; } // Modern async version with promises async function debounceAsync(fn, delay) { if (typeof fn !== "function" || typeof delay !== "number") { throw new TypeError("First argument must be a function, second a number"); } let timerId; return function (...args) { return new Promise((resolve) => { clearTimeout(timerId); timerId = setTimeout(() => { resolve(fn.apply(this, args)); }, delay); }); }; } const log = debounce(() => console.log("Debounced!"), 300); log(); log(); log(); // Logs once after 300ms of inactivity
Explanation: Limits rate at which a function fires. Classic callback version and modern async/Promise version for modern use cases. Includes parameter validation.