1 /*
2 * WMA compatible decoder
3 * Copyright (c) 2002 The FFmpeg Project
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * WMA compatible decoder.
25 * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
26 * WMA v1 is identified by audio format 0x160 in Microsoft media files
27 * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
28 *
29 * To use this decoder, a calling application must supply the extra data
30 * bytes provided with the WMA data. These are the extra, codec-specific
31 * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
32 * to the decoder using the extradata[_size] fields in AVCodecContext. There
33 * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
34 */
35
36 #include "config_components.h"
37
40
46
48 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
49
50 #define HGAINVLCBITS 9
51 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
52
54
55 #ifdef TRACE
57 int prec,
const float *
tab,
int n)
58 {
60
62 for (
i = 0;
i < n;
i++) {
68 }
71 }
72 #endif /* TRACE */
73
75 {
78 uint8_t *extradata;
79
83 }
84
86
87 /* extract flag info */
88 flags2 = 0;
91 flags2 =
AV_RL16(extradata + 2);
93 flags2 =
AV_RL16(extradata + 4);
94
95 s->use_exp_vlc = flags2 & 0x0001;
96 s->use_bit_reservoir = flags2 & 0x0002;
97 s->use_variable_block_len = flags2 & 0x0004;
98
100 if (
AV_RL16(extradata+4)==0xd &&
s->use_variable_block_len){
101 av_log(avctx,
AV_LOG_WARNING,
"Disabling use_variable_block_len, if this fails contact the ffmpeg developers and send us the file\n");
102 s->use_variable_block_len= 0;
// this fixes issue1503
103 }
104 }
105
107 s->max_exponent[
i] = 1.0;
108
111
112 /* init MDCT */
113 for (
i = 0;
i <
s->nb_block_sizes;
i++) {
114 float scale = 1.0 / 32768.0;
119 }
120
121 if (
s->use_noise_coding) {
126 -18, 0, avctx);
129 }
130
131 if (
s->use_exp_vlc) {
132 // FIXME move out of context
138 } else
140
142
144
145 return 0;
146 }
147
148 /**
149 * compute x^-0.25 with an exponent and mantissa table. We use linear
150 * interpolation to reduce the mantissa table size at a small speed
151 * expense (linear interpolation approximately doubles the number of
152 * bits of precision).
153 */
155 {
156 union {
158 unsigned int v;
160 unsigned int e, m;
162
166 /* build interpolation scale: 1 <= t < 2. */
167 t.v = ((
u.v <<
LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
168 a =
s->lsp_pow_m_table1[m];
169 b =
s->lsp_pow_m_table2[m];
170 return s->lsp_pow_e_table[e] * (
a +
b * t.f);
171 }
172
174 {
177
178 wdel =
M_PI / frame_len;
179 for (
i = 0;
i < frame_len;
i++)
180 s->lsp_cos_table[
i] = 2.0f * cos(wdel *
i);
181
182 /* tables for x^-0.25 computation */
183 for (
i = 0;
i < 256;
i++) {
185 s->lsp_pow_e_table[
i] =
exp2f(e * -0.25);
186 }
187
188 /* NOTE: these two tables are needed to avoid two operations in
189 * pow_m1_4 */
195 s->lsp_pow_m_table1[
i] = 2 *
a -
b;
196 s->lsp_pow_m_table2[
i] =
b -
a;
198 }
199 }
200
201 /**
202 * NOTE: We use the same code as Vorbis here
203 * @todo optimize it further with SSE/3Dnow
204 */
206 int n, float *lsp)
207 {
209 float p, q,
w, v, val_max;
210
211 val_max = 0;
212 for (
i = 0;
i < n;
i++) {
214 q = 0.5f;
215 w =
s->lsp_cos_table[
i];
219 }
224 if (v > val_max)
225 val_max = v;
227 }
228 *val_max_ptr = val_max;
229 }
230
231 /**
232 * decode exponents coded with LSP coefficients (same idea as Vorbis)
233 */
235 {
238
240 if (
i == 0 ||
i >= 8)
242 else
245 }
246
248 s->block_len, lsp_coefs);
249 }
250
251 /** pow(10, i / 16.0) for i in -60..95 */
253 1.7782794100389e-04, 2.0535250264571e-04,
254 2.3713737056617e-04, 2.7384196342644e-04,
255 3.1622776601684e-04, 3.6517412725484e-04,
256 4.2169650342858e-04, 4.8696752516586e-04,
257 5.6234132519035e-04, 6.4938163157621e-04,
258 7.4989420933246e-04, 8.6596432336006e-04,
259 1.0000000000000e-03, 1.1547819846895e-03,
260 1.3335214321633e-03, 1.5399265260595e-03,
261 1.7782794100389e-03, 2.0535250264571e-03,
262 2.3713737056617e-03, 2.7384196342644e-03,
263 3.1622776601684e-03, 3.6517412725484e-03,
264 4.2169650342858e-03, 4.8696752516586e-03,
265 5.6234132519035e-03, 6.4938163157621e-03,
266 7.4989420933246e-03, 8.6596432336006e-03,
267 1.0000000000000e-02, 1.1547819846895e-02,
268 1.3335214321633e-02, 1.5399265260595e-02,
269 1.7782794100389e-02, 2.0535250264571e-02,
270 2.3713737056617e-02, 2.7384196342644e-02,
271 3.1622776601684e-02, 3.6517412725484e-02,
272 4.2169650342858e-02, 4.8696752516586e-02,
273 5.6234132519035e-02, 6.4938163157621e-02,
274 7.4989420933246e-02, 8.6596432336007e-02,
275 1.0000000000000e-01, 1.1547819846895e-01,
276 1.3335214321633e-01, 1.5399265260595e-01,
277 1.7782794100389e-01, 2.0535250264571e-01,
278 2.3713737056617e-01, 2.7384196342644e-01,
279 3.1622776601684e-01, 3.6517412725484e-01,
280 4.2169650342858e-01, 4.8696752516586e-01,
281 5.6234132519035e-01, 6.4938163157621e-01,
282 7.4989420933246e-01, 8.6596432336007e-01,
283 1.0000000000000e+00, 1.1547819846895e+00,
284 1.3335214321633e+00, 1.5399265260595e+00,
285 1.7782794100389e+00, 2.0535250264571e+00,
286 2.3713737056617e+00, 2.7384196342644e+00,
287 3.1622776601684e+00, 3.6517412725484e+00,
288 4.2169650342858e+00, 4.8696752516586e+00,
289 5.6234132519035e+00, 6.4938163157621e+00,
290 7.4989420933246e+00, 8.6596432336007e+00,
291 1.0000000000000e+01, 1.1547819846895e+01,
292 1.3335214321633e+01, 1.5399265260595e+01,
293 1.7782794100389e+01, 2.0535250264571e+01,
294 2.3713737056617e+01, 2.7384196342644e+01,
295 3.1622776601684e+01, 3.6517412725484e+01,
296 4.2169650342858e+01, 4.8696752516586e+01,
297 5.6234132519035e+01, 6.4938163157621e+01,
298 7.4989420933246e+01, 8.6596432336007e+01,
299 1.0000000000000e+02, 1.1547819846895e+02,
300 1.3335214321633e+02, 1.5399265260595e+02,
301 1.7782794100389e+02, 2.0535250264571e+02,
302 2.3713737056617e+02, 2.7384196342644e+02,
303 3.1622776601684e+02, 3.6517412725484e+02,
304 4.2169650342858e+02, 4.8696752516586e+02,
305 5.6234132519035e+02, 6.4938163157621e+02,
306 7.4989420933246e+02, 8.6596432336007e+02,
307 1.0000000000000e+03, 1.1547819846895e+03,
308 1.3335214321633e+03, 1.5399265260595e+03,
309 1.7782794100389e+03, 2.0535250264571e+03,
310 2.3713737056617e+03, 2.7384196342644e+03,
311 3.1622776601684e+03, 3.6517412725484e+03,
312 4.2169650342858e+03, 4.8696752516586e+03,
313 5.6234132519035e+03, 6.4938163157621e+03,
314 7.4989420933246e+03, 8.6596432336007e+03,
315 1.0000000000000e+04, 1.1547819846895e+04,
316 1.3335214321633e+04, 1.5399265260595e+04,
317 1.7782794100389e+04, 2.0535250264571e+04,
318 2.3713737056617e+04, 2.7384196342644e+04,
319 3.1622776601684e+04, 3.6517412725484e+04,
320 4.2169650342858e+04, 4.8696752516586e+04,
321 5.6234132519035e+04, 6.4938163157621e+04,
322 7.4989420933246e+04, 8.6596432336007e+04,
323 1.0000000000000e+05, 1.1547819846895e+05,
324 1.3335214321633e+05, 1.5399265260595e+05,
325 1.7782794100389e+05, 2.0535250264571e+05,
326 2.3713737056617e+05, 2.7384196342644e+05,
327 3.1622776601684e+05, 3.6517412725484e+05,
328 4.2169650342858e+05, 4.8696752516586e+05,
329 5.6234132519035e+05, 6.4938163157621e+05,
330 7.4989420933246e+05, 8.6596432336007e+05,
331 };
332
333 /**
334 * decode exponents coded with VLC codes
335 */
337 {
338 int last_exp, n,
code;
339 const uint16_t *ptr;
340 float v, max_scale;
341 uint32_t *q, *q_end, iv;
342 const float *ptab =
pow_tab + 60;
343 const uint32_t *iptab = (const uint32_t *) ptab;
344
345 ptr =
s->exponent_bands[
s->frame_len_bits -
s->block_len_bits];
346 q = (uint32_t *)
s->exponents[ch];
347 q_end = q +
s->block_len;
348 max_scale = 0;
349 if (
s->version == 1) {
351 v = ptab[last_exp];
352 iv = iptab[last_exp];
353 max_scale = v;
354 n = *ptr++;
355 switch (n & 3) do {
356 case 0: *q++ = iv;
357 case 3: *q++ = iv;
358 case 2: *q++ = iv;
359 case 1: *q++ = iv;
360 } while ((n -= 4) > 0);
361 } else
362 last_exp = 36;
363
364 while (q < q_end) {
366 /* NOTE: this offset is the same as MPEG-4 AAC! */
367 last_exp +=
code - 60;
370 last_exp);
372 }
373 v = ptab[last_exp];
374 iv = iptab[last_exp];
375 if (v > max_scale)
376 max_scale = v;
377 n = *ptr++;
378 switch (n & 3) do {
379 case 0: *q++ = iv;
380 case 3: *q++ = iv;
381 case 2: *q++ = iv;
382 case 1: *q++ = iv;
383 } while ((n -= 4) > 0);
384 }
385 s->max_exponent[ch] = max_scale;
386 return 0;
387 }
388
389 /**
390 * Apply MDCT window and add into output.
391 *
392 * We ensure that when the windows overlap their squared sum
393 * is always 1 (MDCT reconstruction rule).
394 */
396 {
397 float *in =
s->output;
398 int block_len, bsize, n;
399
400 /* left part */
401 if (
s->block_len_bits <=
s->prev_block_len_bits) {
402 block_len =
s->block_len;
403 bsize =
s->frame_len_bits -
s->block_len_bits;
404
405 s->fdsp->vector_fmul_add(
out, in,
s->windows[bsize],
407 } else {
408 block_len = 1 <<
s->prev_block_len_bits;
409 n = (
s->block_len - block_len) / 2;
410 bsize =
s->frame_len_bits -
s->prev_block_len_bits;
411
412 s->fdsp->vector_fmul_add(
out + n, in + n,
s->windows[bsize],
414
415 memcpy(
out + n + block_len, in + n + block_len, n *
sizeof(
float));
416 }
417
420
421 /* right part */
422 if (
s->block_len_bits <=
s->next_block_len_bits) {
423 block_len =
s->block_len;
424 bsize =
s->frame_len_bits -
s->block_len_bits;
425
426 s->fdsp->vector_fmul_reverse(
out, in,
s->windows[bsize], block_len);
427 } else {
428 block_len = 1 <<
s->next_block_len_bits;
429 n = (
s->block_len - block_len) / 2;
430 bsize =
s->frame_len_bits -
s->next_block_len_bits;
431
432 memcpy(
out, in, n *
sizeof(
float));
433
434 s->fdsp->vector_fmul_reverse(
out + n, in + n,
s->windows[bsize],
435 block_len);
436
437 memset(
out + n + block_len, 0, n *
sizeof(
float));
438 }
439 }
440
441 /**
442 * @return
443 * 0 if OK.
444 * 1 if last block of frame.
445 * AVERROR if unrecoverable error.
446 */
448 {
449 int channels =
s->avctx->ch_layout.nb_channels;
450 int n, v,
a, ch, bsize;
451 int coef_nb_bits, total_gain;
453 float mdct_norm;
456
457 #ifdef TRACE
458 ff_tlog(
s->avctx,
"***decode_block: %d:%d\n",
459 s->frame_count - 1,
s->block_num);
460 #endif /* TRACE */
461
462 /* compute current block length */
463 if (
s->use_variable_block_len) {
464 n =
av_log2(
s->nb_block_sizes - 1) + 1;
465
466 if (
s->reset_block_lengths) {
467 s->reset_block_lengths = 0;
469 if (v >=
s->nb_block_sizes) {
471 "prev_block_len_bits %d out of range\n",
472 s->frame_len_bits - v);
474 }
475 s->prev_block_len_bits =
s->frame_len_bits - v;
477 if (v >=
s->nb_block_sizes) {
479 "block_len_bits %d out of range\n",
480 s->frame_len_bits - v);
482 }
483 s->block_len_bits =
s->frame_len_bits - v;
484 } else {
485 /* update block lengths */
486 s->prev_block_len_bits =
s->block_len_bits;
487 s->block_len_bits =
s->next_block_len_bits;
488 }
490 if (v >=
s->nb_block_sizes) {
492 "next_block_len_bits %d out of range\n",
493 s->frame_len_bits - v);
495 }
496 s->next_block_len_bits =
s->frame_len_bits - v;
497 } else {
498 /* fixed block len */
499 s->next_block_len_bits =
s->frame_len_bits;
500 s->prev_block_len_bits =
s->frame_len_bits;
501 s->block_len_bits =
s->frame_len_bits;
502 }
503
504 if (
s->frame_len_bits -
s->block_len_bits >=
s->nb_block_sizes){
507 }
508
509 /* now check if the block length is coherent with the frame length */
510 s->block_len = 1 <<
s->block_len_bits;
511 if ((
s->block_pos +
s->block_len) >
s->frame_len) {
514 }
515
518 v = 0;
521 s->channel_coded[ch] =
a;
523 }
524
525 bsize =
s->frame_len_bits -
s->block_len_bits;
526
527 /* if no channel coded, no need to go further */
528 /* XXX: fix potential framing problems */
529 if (!v)
530 goto next;
531
532 /* read total gain and extract corresponding number of bits for
533 * coef escape coding */
534 total_gain = 1;
535 for (;;) {
539 }
543 break;
544 }
545
547
548 /* compute number of coefficients */
549 n =
s->coefs_end[bsize] -
s->coefs_start;
552
553 /* complex coding */
554 if (
s->use_noise_coding) {
556 if (
s->channel_coded[ch]) {
558 n =
s->exponent_high_sizes[bsize];
559 for (
i = 0;
i < n;
i++) {
561 s->high_band_coded[ch][
i] =
a;
562 /* if noise coding, the coefficients are not transmitted */
564 nb_coefs[ch] -=
s->exponent_high_bands[bsize][
i];
565 }
566 }
567 }
569 if (
s->channel_coded[ch]) {
571
572 n =
s->exponent_high_sizes[bsize];
573 val = (int) 0x80000000;
574 for (
i = 0;
i < n;
i++) {
575 if (
s->high_band_coded[ch][
i]) {
576 if (
val == (
int) 0x80000000) {
578 } else {
581 }
582 s->high_band_values[ch][
i] =
val;
583 }
584 }
585 }
586 }
587 }
588
589 /* exponents can be reused in short blocks. */
590 if ((
s->block_len_bits ==
s->frame_len_bits) ||
get_bits1(&
s->gb)) {
592 if (
s->channel_coded[ch]) {
593 if (
s->use_exp_vlc) {
596 } else {
598 }
599 s->exponents_bsize[ch] = bsize;
600 s->exponents_initialized[ch] = 1;
601 }
602 }
603 }
604
606 if (
s->channel_coded[ch] && !
s->exponents_initialized[ch])
608 }
609
610 /* parse spectral coefficients : just RLE encoding */
612 if (
s->channel_coded[ch]) {
613 int tindex;
616
617 /* special VLC tables are used for ms stereo because
618 * there is potentially less energy there */
619 tindex = (ch == 1 &&
s->ms_stereo);
620 memset(ptr, 0,
s->block_len *
sizeof(
WMACoef));
622 s->level_table[tindex],
s->run_table[tindex],
624 s->block_len,
s->frame_len_bits, coef_nb_bits);
627 }
630 }
631
632 /* normalize */
633 {
634 int n4 =
s->block_len / 2;
635 mdct_norm = 1.0 / (
float) n4;
637 mdct_norm *= sqrt(n4);
638 }
639
640 /* finally compute the MDCT coefficients */
642 if (
s->channel_coded[ch]) {
644 float *coefs, *exponents,
mult, mult1,
noise;
645 int i, j, n, n1, last_high_band, esize;
647
648 coefs1 =
s->coefs1[ch];
649 exponents =
s->exponents[ch];
650 esize =
s->exponents_bsize[ch];
653 coefs =
s->coefs[ch];
654 if (
s->use_noise_coding) {
656 /* very low freqs : noise */
657 for (
i = 0;
i <
s->coefs_start;
i++) {
658 *coefs++ =
s->noise_table[
s->noise_index] *
659 exponents[i << bsize >> esize] * mult1;
660 s->noise_index = (
s->noise_index + 1) &
662 }
663
664 n1 =
s->exponent_high_sizes[bsize];
665
666 /* compute power of high bands */
667 exponents =
s->exponents[ch] +
668 (
s->high_band_start[bsize] << bsize >> esize);
669 last_high_band = 0; /* avoid warning */
670 for (j = 0; j < n1; j++) {
671 n =
s->exponent_high_bands[
s->frame_len_bits -
672 s->block_len_bits][j];
673 if (
s->high_band_coded[ch][j]) {
674 float e2, v;
675 e2 = 0;
676 for (
i = 0;
i < n;
i++) {
677 v = exponents[i << bsize >> esize];
678 e2 += v * v;
679 }
680 exp_power[j] = e2 / n;
681 last_high_band = j;
682 ff_tlog(
s->avctx,
"%d: power=%f (%d)\n", j, exp_power[j], n);
683 }
684 exponents += n << bsize >> esize;
685 }
686
687 /* main freqs and high freqs */
688 exponents =
s->exponents[ch] + (
s->coefs_start << bsize >> esize);
689 for (j = -1; j < n1; j++) {
690 if (j < 0)
691 n =
s->high_band_start[bsize] -
s->coefs_start;
692 else
693 n =
s->exponent_high_bands[
s->frame_len_bits -
694 s->block_len_bits][j];
695 if (j >= 0 &&
s->high_band_coded[ch][j]) {
696 /* use noise with specified power */
697 mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
698 /* XXX: use a table */
699 mult1 = mult1 *
ff_exp10(
s->high_band_values[ch][j] * 0.05);
700 mult1 = mult1 / (
s->max_exponent[ch] *
s->noise_mult);
701 mult1 *= mdct_norm;
702 for (
i = 0;
i < n;
i++) {
703 noise =
s->noise_table[
s->noise_index];
705 *coefs++ =
noise * exponents[i << bsize >> esize] * mult1;
706 }
707 exponents += n << bsize >> esize;
708 } else {
709 /* coded values + small noise */
710 for (
i = 0;
i < n;
i++) {
711 noise =
s->noise_table[
s->noise_index];
713 *coefs++ = ((*coefs1++) +
noise) *
714 exponents[i << bsize >> esize] *
mult;
715 }
716 exponents += n << bsize >> esize;
717 }
718 }
719
720 /* very high freqs : noise */
721 n =
s->block_len -
s->coefs_end[bsize];
722 mult1 =
mult * exponents[(-(1 << bsize)) >> esize];
723 for (
i = 0;
i < n;
i++) {
724 *coefs++ =
s->noise_table[
s->noise_index] * mult1;
726 }
727 } else {
728 /* XXX: optimize more */
729 for (
i = 0;
i <
s->coefs_start;
i++)
730 *coefs++ = 0.0;
732 for (
i = 0;
i < n;
i++)
733 *coefs++ = coefs1[
i] * exponents[
i << bsize >> esize] *
mult;
734 n =
s->block_len -
s->coefs_end[bsize];
735 for (
i = 0;
i < n;
i++)
736 *coefs++ = 0.0;
737 }
738 }
739 }
740
741 #ifdef TRACE
743 if (
s->channel_coded[ch]) {
744 dump_floats(
s,
"exponents", 3,
s->exponents[ch],
s->block_len);
745 dump_floats(
s,
"coefs", 1,
s->coefs[ch],
s->block_len);
746 }
747 }
748 #endif /* TRACE */
749
750 if (
s->ms_stereo &&
s->channel_coded[1]) {
751 /* nominal case for ms stereo: we do it before mdct */
752 /* no need to optimize this case because it should almost
753 * never happen */
754 if (!
s->channel_coded[0]) {
755 ff_tlog(
s->avctx,
"rare ms-stereo case happened\n");
756 memset(
s->coefs[0], 0,
sizeof(
float) *
s->block_len);
757 s->channel_coded[0] = 1;
758 }
759
760 s->fdsp->butterflies_float(
s->coefs[0],
s->coefs[1],
s->block_len);
761 }
762
763 next:
764 mdct =
s->mdct_ctx[bsize];
765 mdct_fn =
s->mdct_fn[bsize];
766
769
770 n4 =
s->block_len / 2;
771 if (
s->channel_coded[ch])
772 mdct_fn(mdct,
s->output,
s->coefs[ch],
sizeof(
float));
773 else if (!(
s->ms_stereo && ch == 1))
774 memset(
s->output, 0,
sizeof(
s->output));
775
776 /* multiply by the window and add in the frame */
777 index = (
s->frame_len / 2) +
s->block_pos - n4;
779 }
780
781 /* update block number */
783 s->block_pos +=
s->block_len;
784 if (
s->block_pos >=
s->frame_len)
785 return 1;
786 else
787 return 0;
788 }
789
790 /* decode a frame of frame_len samples */
792 int samples_offset)
793 {
795
796 #ifdef TRACE
797 ff_tlog(
s->avctx,
"***decode_frame: %d size=%d\n",
798 s->frame_count++,
s->frame_len);
799 #endif /* TRACE */
800
801 /* read each block */
804 for (;;) {
809 break;
810 }
811
812 for (ch = 0; ch <
s->avctx->ch_layout.nb_channels; ch++) {
813 /* copy current block to output */
814 memcpy(
samples[ch] + samples_offset,
s->frame_out[ch],
815 s->frame_len *
sizeof(*
s->frame_out[ch]));
816 /* prepare for next block */
817 memmove(&
s->frame_out[ch][0], &
s->frame_out[ch][
s->frame_len],
818 s->frame_len *
sizeof(*
s->frame_out[ch]));
819
820 #ifdef TRACE
821 dump_floats(
s,
"samples", 6,
samples[ch] + samples_offset,
823 #endif /* TRACE */
824 }
825
826 return 0;
827 }
828
830 int *got_frame_ptr,
AVPacket *avpkt)
831 {
832 const uint8_t *buf = avpkt->
data;
833 int buf_size = avpkt->
size;
836 uint8_t *q;
838 int samples_offset;
839
840 ff_tlog(avctx,
"***decode_superframe:\n");
841
842 if (buf_size == 0) {
844 return 0;
845
846 frame->nb_samples =
s->frame_len;
849
851 for (
i = 0;
i <
s->avctx->ch_layout.nb_channels;
i++)
852 memcpy(
frame->extended_data[
i], &
s->frame_out[
i][0],
853 frame->nb_samples *
sizeof(
s->frame_out[
i][0]));
854
855 s->last_superframe_len = 0;
857 *got_frame_ptr = 1;
858 return 0;
859 }
860 if (buf_size < avctx->block_align) {
862 "Input packet size too small (%d < %d)\n",
865 }
868
870
871 if (
s->use_bit_reservoir) {
872 /* read super frame header */
874 nb_frames =
get_bits(&
s->gb, 4) - (
s->last_superframe_len <= 0);
875 if (nb_frames <= 0) {
878 "nb_frames is %d bits left %d\n",
880 if (is_error)
882
883 if ((
s->last_superframe_len + buf_size - 1) >
887 }
888
889 q =
s->last_superframe +
s->last_superframe_len;
894 }
896
897 s->last_superframe_len += 8*buf_size - 8;
898 // s->reset_block_lengths = 1; //XXX is this needed ?
899 *got_frame_ptr = 0;
900 return buf_size;
901 }
902 } else
903 nb_frames = 1;
904
905 /* get output buffer */
906 frame->nb_samples = nb_frames *
s->frame_len;
910 samples_offset = 0;
911
912 if (
s->use_bit_reservoir) {
913 bit_offset =
get_bits(&
s->gb,
s->byte_offset_bits + 3);
916 "Invalid last frame bit offset %d > buf size %d (%d)\n",
920 }
921
922 if (
s->last_superframe_len > 0) {
923 /* add bit_offset bits to last frame */
924 if ((
s->last_superframe_len + ((bit_offset + 7) >> 3)) >
928 }
929 q =
s->last_superframe +
s->last_superframe_len;
934 }
938
939 /* XXX: bit_offset bits into last frame */
941 s->last_superframe_len * 8 + bit_offset);
942 /* skip unused bits */
943 if (
s->last_bitoffset > 0)
945 /* this frame is stored in the last superframe and in the
946 * current one */
949 samples_offset +=
s->frame_len;
950 nb_frames--;
951 }
952
953 /* read each frame starting from bit_offset */
954 pos = bit_offset + 4 + 4 +
s->byte_offset_bits + 3;
961
962 s->reset_block_lengths = 1;
963 for (
i = 0;
i < nb_frames;
i++) {
966 samples_offset +=
s->frame_len;
967 }
968
969 /* we copy the end of the frame in the last frame buffer */
971 ((bit_offset + 4 + 4 +
s->byte_offset_bits + 3) & ~7);
972 s->last_bitoffset =
pos & 7;
979 }
980 s->last_superframe_len =
len;
981 memcpy(
s->last_superframe, buf +
pos,
len);
982 } else {
983 /* single frame decode */
986 samples_offset +=
s->frame_len;
987 }
988
989 ff_dlog(
s->avctx,
"%d %d %d %d eaten:%d\n",
990 s->frame_len_bits,
s->block_len_bits,
s->frame_len,
s->block_len,
992
993 *got_frame_ptr = 1;
994
995 return buf_size;
996
998 /* when error, we reset the bit reservoir */
999 s->last_superframe_len = 0;
1001 }
1002
1004 {
1006
1008 s->last_superframe_len = 0;
1009
1012 }
1013
1014 #if CONFIG_WMAV1_DECODER
1028 };
1029 #endif
1030 #if CONFIG_WMAV2_DECODER
1044 };
1045 #endif