1 /*
2 * QuickTime RPZA Video Encoder
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file rpzaenc.c
23 * QT RPZA Video Encoder by Todd Kirby <doubleshot@pacbell.net> and David Adler
24 */
25
29
35
38
43
46
49
50 int first_frame;
// flag set to one when the first frame is being processed
51 // so that comparisons with previous frame data in not attempted
53
59
65
66 #define SQR(x) ((x) * (x))
67
68 /* 15 bit components */
69 #define GET_CHAN(color, chan) (((color) >> ((chan) * 5) & 0x1F))
70 #define R(color) GET_CHAN(color, RED)
71 #define G(color) GET_CHAN(color, GREEN)
72 #define B(color) GET_CHAN(color, BLUE)
73
88
90 {
92
93 color4[0][0] =
min[0];
94 color4[0][1] =
min[1];
95 color4[0][2] =
min[2];
96
97 color4[3][0] =
max[0];
98 color4[3][1] =
max[1];
99 color4[3][2] =
max[2];
100
101 // red components
102 step = (color4[3][0] - color4[0][0] + 1) / 3;
103 color4[1][0] = color4[0][0] +
step;
104 color4[2][0] = color4[3][0] -
step;
105
106 // green components
107 step = (color4[3][1] - color4[0][1] + 1) / 3;
108 color4[1][1] = color4[0][1] +
step;
109 color4[2][1] = color4[3][1] -
step;
110
111 // blue components
112 step = (color4[3][2] - color4[0][2] + 1) / 3;
113 color4[1][2] = color4[0][2] +
step;
114 color4[2][2] = color4[3][2] -
step;
115 }
116
117 /* Fill BlockInfo struct with information about a 4x4 block of the image */
119 {
122
123 // test for right edge block
126 } else {
128 }
129
130 // test for bottom edge block
133 } else {
135 }
136
138 }
139
141 {
142 uint16_t rgb555 = 0;
144
148
152
153 return rgb555;
154 }
155
156 /*
157 * Returns the total difference between two 24 bit color values
158 */
159 static int diff_colors(
const uint8_t *colorA,
const uint8_t *colorB)
160 {
161 int tot;
162
163 tot =
SQR(colorA[0] - colorB[0]);
164 tot +=
SQR(colorA[1] - colorB[1]);
165 tot +=
SQR(colorA[2] - colorB[2]);
166
167 return tot;
168 }
169
170 /*
171 * Returns the maximum channel difference
172 */
174 {
176
180 }
184 }
188 }
190 }
191
192 /*
193 * Find the channel that has the largest difference between minimum and maximum
194 * color values. Put the minimum value in min, maximum in max and the channel
195 * in chan.
196 */
199 {
200 int x, y;
201 uint8_t min_r, max_r, min_g, max_g, min_b, max_b;
203
204 // fix warning about uninitialized vars
205 min_r = min_g = min_b = UINT8_MAX;
206 max_r = max_g = max_b = 0;
207
208 // loop thru and compare pixels
211 // TODO: optimize
212 min_r =
FFMIN(
R(block_ptr[x]), min_r);
213 min_g =
FFMIN(
G(block_ptr[x]), min_g);
214 min_b =
FFMIN(
B(block_ptr[x]), min_b);
215
216 max_r =
FFMAX(
R(block_ptr[x]), max_r);
217 max_g =
FFMAX(
G(block_ptr[x]), max_g);
218 max_b =
FFMAX(
B(block_ptr[x]), max_b);
219 }
221 }
222
226
227 if (
r >
g &&
r >
b) {
231 }
else if (
g >
b &&
g >=
r) {
235 } else {
239 }
240 }
241
242 /*
243 * Compare two 4x4 blocks to determine if the total difference between the
244 * blocks is greater than the thresh parameter. Returns -1 if difference
245 * exceeds threshold or zero otherwise.
246 */
249 {
254 if (
diff >= thresh) {
255 return -1;
256 }
257 }
260 }
261 return 0;
262 }
263
264 /*
265 * Determine the fit of one channel to another within a 4x4 block. This
266 * is used to determine the best palette choices for 4-color encoding.
267 */
270 int *slope, int *y_intercept, int *correlation_coef)
271 {
272 int sumx = 0, sumy = 0, sumx2 = 0, sumy2 = 0, sumxy = 0,
273 sumx_sq = 0, sumy_sq = 0,
tmp, tmp2;
275 uint8_t x, y;
276
278
279 if (count < 2)
280 return -1;
281
284 x =
GET_CHAN(block_ptr[j], xchannel);
285 y =
GET_CHAN(block_ptr[j], ychannel);
286 sumx += x;
287 sumy += y;
288 sumx2 += x * x;
289 sumy2 += y * y;
290 sumxy += x * y;
291 }
293 }
294
295 sumx_sq = sumx * sumx;
296 tmp = (count * sumx2 - sumx_sq);
297
298 // guard against div/0
300 return -2;
301
302 sumy_sq = sumy * sumy;
303
304 *slope = (sumx * sumy - sumxy) /
tmp;
305 *y_intercept = (sumy - (*slope) * sumx) / count;
306
307 tmp2 = count * sumy2 - sumy_sq;
308 if (tmp2 == 0) {
309 *correlation_coef = 0;
310 } else {
311 *correlation_coef = (count * sumxy - sumx * sumy) /
313 }
314
315 return 0; // success
316 }
317
318 /*
319 * Determine the amount of error in the leastsquares fit.
320 */
322 int min,
int max,
int tmp_min,
int tmp_max,
324 {
326 int err;
327 int max_err = 0;
328
331 int x_inc, lin_y, lin_x;
332 x =
GET_CHAN(block_ptr[j], xchannel);
333 y =
GET_CHAN(block_ptr[j], ychannel);
334
335 /* calculate x_inc as the 4-color index (0..3) */
338
339 /* calculate lin_y corresponding to x_inc */
340 lin_y = tmp_min + (tmp_max - tmp_min) * x_inc / 3 + 1;
341
342 err =
FFABS(lin_y - y);
343 if (err > max_err)
344 max_err = err;
345
346 /* calculate lin_x corresponding to x_inc */
347 lin_x =
min + (
max -
min) * x_inc / 3 + 1;
348
349 err =
FFABS(lin_x - x);
350 if (err > max_err)
351 max_err += err;
352 }
354 }
355
356 return max_err;
357 }
358
359 /*
360 * Find the closest match to a color within the 4-color palette
361 */
363 {
365 int smallest_variance = INT_MAX;
366 uint8_t dithered_color[3];
367
370 }
371
372 for (int palette_entry = 0; palette_entry < 4; palette_entry++) {
373 int variance =
diff_colors(dithered_color, colors[palette_entry]);
374
375 if (variance < smallest_variance) {
376 smallest_variance = variance;
378 }
379 }
380
382 }
383
384 /*
385 * Encode a block using the 4-color opcode and palette. return number of
386 * blocks encoded (until we implement multi-block 4 color runs this will
387 * always be 1)
388 */
391 {
394 uint8_t color4[4][3];
395 uint16_t rounded_max, rounded_min;
396 int idx;
397
398 // round min and max wider
401
402 // put a and b colors
403 // encode 4 colors = first 16 bit color with MSB zeroed and...
404 put_bits(pb, 16, rounded_max & ~0x8000);
405 // ...second 16 bit color with MSB on.
406 put_bits(pb, 16, rounded_min | 0x8000);
407
409
410 for (int y = 0; y < y_size; y++) {
411 for (int x = 0; x < x_size; x++) {
414 }
415
416 for (int x = x_size; x < 4; x++)
419 }
420
421 for (int y = y_size; y < 4; y++) {
422 for (int x = 0; x < 4; x++)
424 }
425 return 1; // num blocks encoded
426 }
427
428 /*
429 * Copy a 4x4 block from the current frame buffer to the previous frame buffer.
430 */
432 uint16_t *dest_pixels,
434 {
437
438 for (int y = 0; y < y_size; y++) {
439 memcpy(dest_pixels, src_pixels, x_size);
442 }
443 }
444
445 /*
446 * update statistics for the specified block. If first_block,
447 * it initializes the statistics. Otherwise it updates the statistics IF THIS
448 * BLOCK IS SUITABLE TO CONTINUE A 1-COLOR RUN. That is, it checks whether
449 * the range of colors (since the routine was called first_block != 0) are
450 * all close enough intensities to be represented by a single color.
451
452 * The routine returns 0 if this block is too different to be part of
453 * the same run of 1-color blocks. The routine returns 1 if this
454 * block can be part of the same 1-color block run.
455
456 * If the routine returns 1, it also updates its arguments to include
457 * the statistics of this block. Otherwise, the stats are unchanged
458 * and don't include the current block.
459 */
461 uint8_t min_color[3], uint8_t max_color[3],
462 int *total_rgb, int *total_pixels,
463 uint8_t avg_color[3], int first_block)
464 {
465 int x, y;
466 int is_in_range;
467 int total_pixels_blk;
468 int threshold;
469
470 uint8_t min_color_blk[3], max_color_blk[3];
471 int total_rgb_blk[3];
472 uint8_t avg_color_blk[3];
473
474 if (first_block) {
475 min_color[0] = UINT8_MAX;
476 min_color[1] = UINT8_MAX;
477 min_color[2] = UINT8_MAX;
478 max_color[0] = 0;
479 max_color[1] = 0;
480 max_color[2] = 0;
481 total_rgb[0] = 0;
482 total_rgb[1] = 0;
483 total_rgb[2] = 0;
484 *total_pixels = 0;
485 threshold =
s->start_one_color_thresh;
486 } else {
487 threshold =
s->continue_one_color_thresh;
488 }
489
490 /*
491 The *_blk variables will include the current block.
492 Initialize them based on the blocks so far.
493 */
494 min_color_blk[0] = min_color[0];
495 min_color_blk[1] = min_color[1];
496 min_color_blk[2] = min_color[2];
497 max_color_blk[0] = max_color[0];
498 max_color_blk[1] = max_color[1];
499 max_color_blk[2] = max_color[2];
500 total_rgb_blk[0] = total_rgb[0];
501 total_rgb_blk[1] = total_rgb[1];
502 total_rgb_blk[2] = total_rgb[2];
504
505 /*
506 Update stats for this block's pixels
507 */
510 total_rgb_blk[0] +=
R(
block[x]);
511 total_rgb_blk[1] +=
G(
block[x]);
512 total_rgb_blk[2] +=
B(
block[x]);
513
514 min_color_blk[0] =
FFMIN(
R(
block[x]), min_color_blk[0]);
515 min_color_blk[1] =
FFMIN(
G(
block[x]), min_color_blk[1]);
516 min_color_blk[2] =
FFMIN(
B(
block[x]), min_color_blk[2]);
517
518 max_color_blk[0] =
FFMAX(
R(
block[x]), max_color_blk[0]);
519 max_color_blk[1] =
FFMAX(
G(
block[x]), max_color_blk[1]);
520 max_color_blk[2] =
FFMAX(
B(
block[x]), max_color_blk[2]);
521 }
523 }
524
525 /*
526 Calculate average color including current block.
527 */
528 avg_color_blk[0] = total_rgb_blk[0] / total_pixels_blk;
529 avg_color_blk[1] = total_rgb_blk[1] / total_pixels_blk;
530 avg_color_blk[2] = total_rgb_blk[2] / total_pixels_blk;
531
532 /*
533 Are all the pixels within threshold of the average color?
534 */
535 is_in_range = (max_color_blk[0] - avg_color_blk[0] <= threshold &&
536 max_color_blk[1] - avg_color_blk[1] <= threshold &&
537 max_color_blk[2] - avg_color_blk[2] <= threshold &&
538 avg_color_blk[0] - min_color_blk[0] <= threshold &&
539 avg_color_blk[1] - min_color_blk[1] <= threshold &&
540 avg_color_blk[2] - min_color_blk[2] <= threshold);
541
542 if (is_in_range) {
543 /*
544 Set the output variables to include this block.
545 */
546 min_color[0] = min_color_blk[0];
547 min_color[1] = min_color_blk[1];
548 min_color[2] = min_color_blk[2];
549 max_color[0] = max_color_blk[0];
550 max_color[1] = max_color_blk[1];
551 max_color[2] = max_color_blk[2];
552 total_rgb[0] = total_rgb_blk[0];
553 total_rgb[1] = total_rgb_blk[1];
554 total_rgb[2] = total_rgb_blk[2];
555 *total_pixels = total_pixels_blk;
556 avg_color[0] = avg_color_blk[0];
557 avg_color[1] = avg_color_blk[1];
558 avg_color[2] = avg_color_blk[2];
559 }
560
561 return is_in_range;
562 }
563
565 {
567 int block_counter = 0;
568 int n_blocks;
569 int total_blocks;
570 int prev_block_offset;
571 int block_offset = 0;
572 int pblock_offset = 0;
576 int tmp_min, tmp_max;
577 int total_rgb[3];
578 uint8_t avg_color[3];
579 int pixel_count;
580 uint8_t min_color[3], max_color[3];
581 int slope, y_intercept, correlation_coef;
582 const uint16_t *src_pixels = (
const uint16_t *)pict->
data[0];
583 uint16_t *prev_pixels = (uint16_t *)
s->prev_frame->data[0];
584
585 /* Number of 4x4 blocks in frame. */
586 total_blocks = ((
s->frame_width + 3) / 4) * ((
s->frame_height + 3) / 4);
587
592
594
595 while (block_counter < total_blocks) {
596 // SKIP CHECK
597 // make sure we have a valid previous frame and we're not writing
598 // a key frame
599 if (!
s->first_frame) {
600 n_blocks = 0;
601 prev_block_offset = 0;
602
603 while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
606
607 // multi-block opcodes cannot span multiple rows.
608 // If we're starting a new row, break out and write the opcode
609 /* TODO: Should eventually use bi.row here to determine when a
610 row break occurs, but that is currently breaking the
611 quicktime player. This is probably due to a bug in the
612 way I'm calculating the current row.
613 */
614 if (prev_block_offset && block_offset - prev_block_offset > 12) {
615 break;
616 }
617
618 prev_block_offset = block_offset;
619
621 &src_pixels[block_offset], &bi,
s->skip_frame_thresh) != 0) {
622 // write out skippable blocks
623 if (n_blocks) {
624
625 // write skip opcode
626 put_bits(&
s->pb, 8, 0x80 | (n_blocks - 1));
627 block_counter += n_blocks;
628
629 goto post_skip;
630 }
631 break;
632 }
633
634 /*
635 * NOTE: we don't update skipped blocks in the previous frame buffer
636 * since skipped needs always to be compared against the first skipped
637 * block to avoid artifacts during gradual fade in/outs.
638 */
639
640 // update_block_in_prev_frame(&src_pixels[block_offset],
641 // &prev_pixels[pblock_offset], &bi, block_counter + n_blocks);
642
643 n_blocks++;
644 }
645
646 // we're either at the end of the frame or we've reached the maximum
647 // of 32 blocks in a run. Write out the run.
648 if (n_blocks) {
649 // write skip opcode
650 put_bits(&
s->pb, 8, 0x80 | (n_blocks - 1));
651 block_counter += n_blocks;
652
653 continue;
654 }
655
656 } else {
659 }
660 post_skip :
661
662 // ONE COLOR CHECK
664 min_color, max_color,
665 total_rgb, &pixel_count, avg_color, 1)) {
666 prev_block_offset = block_offset;
667
668 n_blocks = 1;
669
670 /* update this block in the previous frame buffer */
672 &prev_pixels[pblock_offset], &bi, block_counter + n_blocks);
673
674 // check for subsequent blocks with the same color
675 while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
678
679 // multi-block opcodes cannot span multiple rows.
680 // If we've hit end of a row, break out and write the opcode
681 if (block_offset - prev_block_offset > 12) {
682 break;
683 }
684
686 min_color, max_color,
687 total_rgb, &pixel_count, avg_color, 0)) {
688 break;
689 }
690
691 prev_block_offset = block_offset;
692
693 /* update this block in the previous frame buffer */
695 &prev_pixels[pblock_offset], &bi, block_counter + n_blocks);
696
697 n_blocks++;
698 }
699
700 // write one color opcode.
701 put_bits(&
s->pb, 8, 0xa0 | (n_blocks - 1));
702 // write color to encode.
704 // skip past the blocks we've just encoded.
705 block_counter += n_blocks;
706 } else { // FOUR COLOR CHECK
707 int err = 0;
708
709 // get max component diff for block
711
712 min_color[0] = 0;
713 max_color[0] = 0;
714 min_color[1] = 0;
715 max_color[1] = 0;
716 min_color[2] = 0;
717 max_color[2] = 0;
718
719 // run least squares against other two components
720 for (
i = 0;
i < 3;
i++) {
724 continue;
725 }
726
727 slope = y_intercept = correlation_coef = 0;
728
730 &slope, &y_intercept, &correlation_coef)) {
731 min_color[
i] =
GET_CHAN(src_pixels[block_offset],
i);
732 max_color[
i] =
GET_CHAN(src_pixels[block_offset],
i);
733 } else {
734 tmp_min = 1 +
min * slope + y_intercept;
735 tmp_max = 1 +
max * slope + y_intercept;
736
738 // clamp min and max color values
741
743 min,
max, tmp_min, tmp_max, chan,
i), err);
744
745 min_color[
i] = tmp_min;
746 max_color[
i] = tmp_max;
747 }
748 }
749
750 if (err >
s->sixteen_color_thresh) {
// DO SIXTEEN COLOR BLOCK
751 const uint16_t *row_ptr;
752 int y_size, x_size, rgb555;
753
756
757 row_ptr = &src_pixels[block_offset];
760
761 for (int y = 0; y < y_size; y++) {
762 for (int x = 0; x < x_size; x++) {
763 rgb555 = row_ptr[x] & ~0x8000;
764
766 }
767 for (int x = x_size; x < 4; x++)
769
771 }
772
773 for (int y = y_size; y < 4; y++) {
774 for (int x = 0; x < 4; x++)
776 }
777
778 block_counter++;
779 } else { // FOUR COLOR BLOCK
781 &
s->pb, &src_pixels[block_offset], &bi);
782 }
783
784 /* update this block in the previous frame buffer */
786 &prev_pixels[pblock_offset], &bi, block_counter);
787 }
788 }
789 }
790
792 {
794
795 s->frame_width = avctx->
width;
796 s->frame_height = avctx->
height;
797
801
802 return 0;
803 }
804
806 const AVFrame *pict,
int *got_packet)
807 {
809 uint8_t *buf;
811
814
816
817 // skip 4 byte header, write it later once the size of the chunk is known
819
820 if (!
s->prev_frame->data[0]) {
822 s->prev_frame->format = pict->
format;
823 s->prev_frame->width = pict->
width;
824 s->prev_frame->height = pict->
height;
828 } else {
830 }
831
833
835
838
839 // write header opcode
840 buf[0] = 0xe1; // chunk opcode
841
842 // write chunk length
844
845 *got_packet = 1;
846
847 return 0;
848 }
849
851 {
853
855
856 return 0;
857 }
858
859 #define OFFSET(x) offsetof(RpzaContext, x)
860 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
867 };
868
874 };
875
888 };