1 /*
2 * Copyright (c) 2016 Muhammad Faiz <mfcc64@gmail.com>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
31
32 #define RDFT_BITS_MIN 4
33 #define RDFT_BITS_MAX 16
34
47 };
48
55 };
56
57 #define NB_GAIN_ENTRY_MAX 4096
62
67
70
88
105
121
126
127 #define OFFSET(x) offsetof(FIREqualizerContext, x)
128 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
129 #define TFLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
130
160 };
161
163
165 {
173 s->analysis_rdft =
s->analysis_irdft =
s->rdft =
s->irdft =
NULL;
175 s->cepstrum_rdft =
NULL;
176 s->cepstrum_irdft =
NULL;
177
189 }
190
192 {
194
198 }
199
202 {
203 if (nsamples <= s->nsamples_max) {
204 float *buf = conv_buf + idx->buf_idx *
s->rdft_len;
205 float *obuf = conv_buf + !idx->buf_idx *
s->rdft_len + idx->overlap_idx;
206 float *tbuf =
s->tx_buf;
207 int center =
s->fir_len/2;
208 int k;
209
210 memset(buf, 0, center *
sizeof(*
data));
211 memcpy(buf + center,
data, nsamples *
sizeof(*
data));
212 memset(buf + center + nsamples, 0, (
s->rdft_len - nsamples - center) *
sizeof(*
data));
213 s->rdft_fn(
s->rdft, tbuf, buf,
sizeof(
float));
214
215 for (k = 0; k <=
s->rdft_len/2; k++) {
216 tbuf[2*k] *= kernel_buf[k];
217 tbuf[2*k+1] *= kernel_buf[k];
218 }
219
221 for (k = 0; k <
s->rdft_len - idx->overlap_idx; k++)
222 buf[k] += obuf[k];
223 memcpy(
data, buf, nsamples *
sizeof(*
data));
224 idx->buf_idx = !idx->buf_idx;
225 idx->overlap_idx = nsamples;
226 } else {
227 while (nsamples >
s->nsamples_max * 2) {
229 data +=
s->nsamples_max;
230 nsamples -=
s->nsamples_max;
231 }
234 }
235 }
236
239 float *restrict
data,
int nsamples)
240 {
241 if (nsamples <= s->nsamples_max) {
242 float *buf = conv_buf + idx->buf_idx *
s->rdft_len;
243 float *obuf = conv_buf + !idx->buf_idx *
s->rdft_len + idx->overlap_idx;
244 float *tbuf =
s->tx_buf;
245 int k;
246
247 memcpy(buf,
data, nsamples *
sizeof(*
data));
248 memset(buf + nsamples, 0, (
s->rdft_len - nsamples) *
sizeof(*
data));
249 s->rdft_fn(
s->rdft, tbuf, buf,
sizeof(
float));
250
251 for (k = 0; k <
s->rdft_len + 2; k += 2) {
252 float re, im;
253 re = tbuf[k] * kernel_buf[k] - tbuf[k+1] * kernel_buf[k+1];
254 im = tbuf[k] * kernel_buf[k+1] + tbuf[k+1] * kernel_buf[k];
255 tbuf[k] = re;
256 tbuf[k+1] = im;
257 }
258
260 for (k = 0; k <
s->rdft_len - idx->overlap_idx; k++)
261 buf[k] += obuf[k];
262 memcpy(
data, buf, nsamples *
sizeof(*
data));
263 idx->buf_idx = !idx->buf_idx;
264 idx->overlap_idx = nsamples;
265 } else {
266 while (nsamples >
s->nsamples_max * 2) {
268 data +=
s->nsamples_max;
269 nsamples -=
s->nsamples_max;
270 }
273 }
274 }
275
277 OverlapIndex *restrict idx,
float *restrict data0,
float *restrict data1,
int nsamples)
278 {
279 if (nsamples <= s->nsamples_max) {
281 AVComplexFloat *obuf = conv_buf + !idx->buf_idx *
s->rdft_len + idx->overlap_idx;
283 int center =
s->fir_len/2;
284 int k;
286
287 memset(buf, 0, center * sizeof(*buf));
288 for (k = 0; k < nsamples; k++) {
289 buf[center+k].
re = data0[k];
290 buf[center+k].
im = data1[k];
291 }
292 memset(buf + center + nsamples, 0, (
s->rdft_len - nsamples - center) *
sizeof(*buf));
294
295 /* swap re <-> im, do backward fft using forward fft_ctx */
296 /* normalize with 0.5f */
298 tbuf[0].
re = 0.5f * kernel_buf[0] * tbuf[0].
im;
299 tbuf[0].
im = 0.5f * kernel_buf[0] *
tmp;
300 for (k = 1; k <
s->rdft_len/2; k++) {
301 int m =
s->rdft_len - k;
303 tbuf[k].
re = 0.5f * kernel_buf[k] * tbuf[k].
im;
304 tbuf[k].
im = 0.5f * kernel_buf[k] *
tmp;
306 tbuf[m].
re = 0.5f * kernel_buf[k] * tbuf[m].
im;
307 tbuf[m].
im = 0.5f * kernel_buf[k] *
tmp;
308 }
310 tbuf[k].
re = 0.5f * kernel_buf[k] * tbuf[k].
im;
311 tbuf[k].
im = 0.5f * kernel_buf[k] *
tmp;
312
314
315 for (k = 0; k <
s->rdft_len - idx->overlap_idx; k++) {
316 buf[k].
re += obuf[k].
re;
317 buf[k].
im += obuf[k].
im;
318 }
319
320 /* swapped re <-> im */
321 for (k = 0; k < nsamples; k++) {
322 data0[k] = buf[k].
im;
323 data1[k] = buf[k].
re;
324 }
325 idx->buf_idx = !idx->buf_idx;
326 idx->overlap_idx = nsamples;
327 } else {
328 while (nsamples >
s->nsamples_max * 2) {
330 data0 +=
s->nsamples_max;
331 data1 +=
s->nsamples_max;
332 nsamples -=
s->nsamples_max;
333 }
335 fast_convolute2(
s, kernel_buf, conv_buf, idx, data0 + nsamples/2, data1 + nsamples/2, nsamples - nsamples/2);
336 }
337 }
338
340 {
342 int rate =
ctx->inputs[0]->sample_rate;
345 int x;
346 int center =
s->fir_len / 2;
347 double delay =
s->zero_phase ? 0.0 : (
double) center / rate;
348 double vx, ya, yb;
349
351 s->analysis_buf[0] *=
s->rdft_len/2;
352 for (x = 1; x <= center; x++) {
353 s->analysis_buf[x] *=
s->rdft_len/2;
354 s->analysis_buf[
s->analysis_rdft_len - x] *=
s->rdft_len/2;
355 }
356 } else {
357 for (x = 0; x <
s->fir_len; x++)
358 s->analysis_buf[x] *=
s->rdft_len/2;
359 }
360
361 if (ch)
362 fprintf(fp, "\n\n");
363
364 fprintf(fp, "# time[%d] (time amplitude)\n", ch);
365
367 for (x = center; x > 0; x--)
368 fprintf(fp,
"%15.10f %15.10f\n", delay - (
double) x / rate, (
double)
s->analysis_buf[
s->analysis_rdft_len - x]);
369
370 for (x = 0; x <= center; x++)
371 fprintf(fp,
"%15.10f %15.10f\n", delay + (
double)x / rate , (
double)
s->analysis_buf[x]);
372 } else {
373 for (x = 0; x <
s->fir_len; x++)
374 fprintf(fp,
"%15.10f %15.10f\n", (
double)x / rate, (
double)
s->analysis_buf[x]);
375 }
376
377 s->analysis_rdft_fn(
s->analysis_rdft,
s->analysis_tbuf,
s->analysis_buf,
sizeof(
float));
378
379 fprintf(fp, "\n\n# freq[%d] (frequency desired_gain actual_gain)\n", ch);
380
381 for (x = 0; x <=
s->analysis_rdft_len/2; x++) {
383 vx = (
double)x * rate /
s->analysis_rdft_len;
387 yb =
s->min_phase ? hypotf(
s->analysis_tbuf[
i],
s->analysis_tbuf[
i+1]) :
s->analysis_tbuf[
i];
390 if (ylog) {
391 ya = 20.0 * log10(
fabs(ya));
392 yb = 20.0 * log10(
fabs(yb));
393 }
394 fprintf(fp, "%17.10f %17.10f %17.10f\n", vx, ya, yb);
395 }
396 }
397
399 {
402
405 s->gain_entry_err =
AVERROR(EINVAL);
406 return 0;
407 }
408
411 s->gain_entry_err =
AVERROR(EINVAL);
412 return 0;
413 }
414
415 if (
s->nb_gain_entry > 0 && freq <= s->gain_entry_tbl[
s->nb_gain_entry - 1].freq) {
417 s->gain_entry_err =
AVERROR(EINVAL);
418 return 0;
419 }
420
421 s->gain_entry_tbl[
s->nb_gain_entry].freq = freq;
422 s->gain_entry_tbl[
s->nb_gain_entry].gain = gain;
424 return 0;
425 }
426
428 {
429 const double *freq =
key;
431
432 if (*freq <
entry[0].freq)
433 return -1;
434 if (*freq >
entry[1].freq)
435 return 1;
436 return 0;
437 }
438
440 {
444 double d0, d1, d;
445
447 return freq;
448
449 if (!
s->nb_gain_entry)
450 return 0;
451
452 if (freq <= s->gain_entry_tbl[0].freq)
453 return s->gain_entry_tbl[0].gain;
454
455 if (freq >=
s->gain_entry_tbl[
s->nb_gain_entry-1].freq)
456 return s->gain_entry_tbl[
s->nb_gain_entry-1].gain;
457
458 res = bsearch(&freq, &
s->gain_entry_tbl,
s->nb_gain_entry - 1,
sizeof(*res),
gain_entry_compare);
460
462 d0 = freq - res[0].
freq;
463 d1 = res[1].
freq - freq;
464
465 if (d0 && d1)
466 return (d0 * res[1].gain + d1 * res[0].gain) / d;
467
468 if (d0)
470
472 }
473
475 {
479 double x, x2, x3;
481 double m0, m1, m2, msum, unit;
482
483 if (!
s->nb_gain_entry)
484 return 0;
485
486 if (freq <= s->gain_entry_tbl[0].freq)
487 return s->gain_entry_tbl[0].gain;
488
489 if (freq >=
s->gain_entry_tbl[
s->nb_gain_entry-1].freq)
490 return s->gain_entry_tbl[
s->nb_gain_entry-1].gain;
491
492 res = bsearch(&freq, &
s->gain_entry_tbl,
s->nb_gain_entry - 1,
sizeof(*res),
gain_entry_compare);
494
496 m0 = res !=
s->gain_entry_tbl ?
497 unit * (res[0].
gain - res[-1].
gain) / (res[0].freq - res[-1].freq) : 0;
499 m2 = res !=
s->gain_entry_tbl +
s->nb_gain_entry - 2 ?
500 unit * (res[2].
gain - res[1].
gain) / (res[2].freq - res[1].freq) : 0;
501
503 m0 = msum > 0 ? (
fabs(m0) * m1 +
fabs(m1) * m0) / msum : 0;
505 m1 = msum > 0 ? (
fabs(m1) * m2 +
fabs(m2) * m1) / msum : 0;
506
509 b = 3 * res[1].
gain - m1 - 2 *
c - 3 * d;
511
512 x = (freq - res[0].
freq) / unit;
513 x2 = x * x;
514 x3 = x2 * x;
515
516 return a * x3 +
b * x2 +
c * x + d;
517 }
518
520 "f",
521 "sr",
522 "ch",
523 "chid",
524 "chs",
525 "chlayout",
527 };
528
537 };
538
540 {
541 int k, cepstrum_len =
s->cepstrum_len, rdft_len =
s->rdft_len;
542 double norm = 2.0 / cepstrum_len;
543 double minval = 1e-7 / rdft_len;
544
545 memset(
s->cepstrum_buf, 0, cepstrum_len *
sizeof(*
s->cepstrum_buf));
546 memset(
s->cepstrum_tbuf, 0, (cepstrum_len + 2) *
sizeof(*
s->cepstrum_tbuf));
547 memcpy(
s->cepstrum_buf, rdft_buf, rdft_len/2 *
sizeof(*rdft_buf));
548 memcpy(
s->cepstrum_buf + cepstrum_len - rdft_len/2, rdft_buf + rdft_len/2, rdft_len/2 *
sizeof(*rdft_buf));
549
550 s->cepstrum_rdft_fn(
s->cepstrum_rdft,
s->cepstrum_tbuf,
s->cepstrum_buf,
sizeof(
float));
551
552 for (k = 0; k < cepstrum_len + 2; k += 2) {
553 s->cepstrum_tbuf[k] =
log(
FFMAX(
s->cepstrum_tbuf[k], minval));
554 s->cepstrum_tbuf[k+1] = 0;
555 }
556
557 s->cepstrum_irdft_fn(
s->cepstrum_irdft,
s->cepstrum_buf,
s->cepstrum_tbuf,
sizeof(
AVComplexFloat));
558
559 memset(
s->cepstrum_buf + cepstrum_len/2 + 1, 0, (cepstrum_len/2 - 1) *
sizeof(*
s->cepstrum_buf));
560 for (k = 1; k <= cepstrum_len/2; k++)
561 s->cepstrum_buf[k] *= 2;
562
563 s->cepstrum_rdft_fn(
s->cepstrum_rdft,
s->cepstrum_tbuf,
s->cepstrum_buf,
sizeof(
float));
564
565 for (k = 0; k < cepstrum_len + 2; k += 2) {
566 double mag =
exp(
s->cepstrum_tbuf[k] * norm) * norm;
567 double ph =
s->cepstrum_tbuf[k+1] * norm;
568 s->cepstrum_tbuf[k] = mag * cos(
ph);
569 s->cepstrum_tbuf[k+1] = mag * sin(
ph);
570 }
571
572 s->cepstrum_irdft_fn(
s->cepstrum_irdft,
s->cepstrum_buf,
s->cepstrum_tbuf,
sizeof(
AVComplexFloat));
573 memset(rdft_buf, 0,
s->rdft_len *
sizeof(*rdft_buf));
574 memcpy(rdft_buf,
s->cepstrum_buf,
s->fir_len *
sizeof(*rdft_buf));
575
577 memset(
s->analysis_buf, 0, (
s->analysis_rdft_len + 2) *
sizeof(*
s->analysis_buf));
578 memcpy(
s->analysis_buf,
s->cepstrum_buf,
s->fir_len *
sizeof(*
s->analysis_buf));
579 }
580 }
581
583 {
586 const char *gain_entry_func_names[] = {
"entry",
NULL };
587 const char *gain_func_names[] = {
"gain_interpolate",
"cubic_interpolate",
NULL };
592 int ret, k, center, ch;
595 FILE *dump_fp =
NULL;
596
597 s->nb_gain_entry = 0;
598 s->gain_entry_err = 0;
599 if (gain_entry) {
602 gain_entry_func_names, gain_entry_funcs,
ctx, 0,
ctx);
605 if (
s->gain_entry_err < 0)
606 return s->gain_entry_err;
607 }
608
610
615
616 if (
s->dumpfile && (!
s->dump_buf || !
s->analysis_rdft || !(dump_fp =
avpriv_fopen_utf8(
s->dumpfile,
"w"))))
618
621 inlink->ch_layout.u.mask : 0;
623 for (ch = 0; ch <
inlink->ch_layout.nb_channels; ch++) {
624 float *rdft_buf =
s->kernel_tmp_buf + ch * (
s->rdft_len * 2);
625 float *rdft_tbuf =
s->kernel_tmp_tbuf;
629
630 for (k = 0; k <=
s->analysis_rdft_len/2; k++) {
632 if (xlog)
636 s->analysis_tbuf[2*k+1] = 0.0;
637 }
638
640 memcpy(
s->dump_buf,
s->analysis_tbuf, (
s->analysis_rdft_len + 2) *
sizeof(*
s->analysis_tbuf));
641
642 s->analysis_irdft_fn(
s->analysis_irdft,
s->analysis_buf,
s->analysis_tbuf,
sizeof(
AVComplexFloat));
643 center =
s->fir_len / 2;
644
645 for (k = 0; k <= center; k++) {
646 double u = k * (
M_PI/center);
651 break;
653 win = 0.5 + 0.5 * cos(
u);
654 break;
656 win = 0.53836 + 0.46164 * cos(
u);
657 break;
659 win = 0.42 + 0.5 * cos(
u) + 0.08 * cos(2*
u);
660 break;
662 win = 0.40897 + 0.5 * cos(
u) + 0.09103 * cos(2*
u);
663 break;
665 win = 0.4243801 + 0.4973406 * cos(
u) + 0.0782793 * cos(2*
u);
666 break;
668 win = 0.355768 + 0.487396 * cos(
u) + 0.144232 * cos(2*
u) + 0.012604 * cos(3*
u);
669 break;
671 win = 0.3635819 + 0.4891775 * cos(
u) + 0.1365995 * cos(2*
u) + 0.0106411 * cos(3*
u);
672 break;
674 win = 0.35875 + 0.48829 * cos(
u) + 0.14128 * cos(2*
u) + 0.01168 * cos(3*
u);
675 break;
677 win = (
u <= 0.5 *
M_PI) ? 1.0 : (0.5 + 0.5 * cos(2*
u -
M_PI));
678 break;
679 default:
681 }
682 s->analysis_buf[k] *= (2.0/
s->analysis_rdft_len) * (2.0/
s->rdft_len) *
win;
683 if (k)
684 s->analysis_buf[
s->analysis_rdft_len - k] =
s->analysis_buf[k];
685 }
686
687 memset(
s->analysis_buf + center + 1, 0, (
s->analysis_rdft_len -
s->fir_len) *
sizeof(*
s->analysis_buf));
688 memcpy(rdft_tbuf,
s->analysis_buf,
s->rdft_len/2 *
sizeof(*
s->analysis_buf));
689 memcpy(rdft_tbuf +
s->rdft_len/2,
s->analysis_buf +
s->analysis_rdft_len -
s->rdft_len/2,
s->rdft_len/2 *
sizeof(*
s->analysis_buf));
692 s->rdft_fn(
s->rdft, rdft_buf, rdft_tbuf,
sizeof(
float));
693
694 for (k = 0; k <
s->rdft_len + 2; k++) {
695 if (
isnan(rdft_buf[k]) ||
isinf(rdft_buf[k])) {
698 if (dump_fp)
699 fclose(dump_fp);
701 }
702 }
703
705 for (k = 0; k <=
s->rdft_len/2; k++)
706 rdft_buf[k] = rdft_buf[2*k];
707 }
708
709 if (dump_fp)
711
713 break;
714 }
715
716 memcpy(
s->kernel_buf,
s->kernel_tmp_buf, (
s->multi ?
inlink->ch_layout.nb_channels : 1) * (
s->rdft_len * 2) *
sizeof(*
s->kernel_buf));
718 if (dump_fp)
719 fclose(dump_fp);
720 return 0;
721 }
722
723 #define SELECT_GAIN(s) (s->gain_cmd ? s->gain_cmd : s->gain)
724 #define SELECT_GAIN_ENTRY(s) (s->gain_entry_cmd ? s->gain_entry_cmd : s->gain_entry)
725
727 {
731 float iscale,
scale = 1.f;
733
735
737 s->frame_nsamples_max = 0;
738
739 s->fir_len =
FFMAX(2 * (
int)(
inlink->sample_rate *
s->delay) + 1, 3);
740 s->remaining =
s->fir_len - 1;
741
743 s->rdft_len = 1 << rdft_bits;
744 s->nsamples_max =
s->rdft_len -
s->fir_len + 1;
745 if (
s->nsamples_max * 2 >=
s->fir_len)
746 break;
747 }
748
752 }
753
754 iscale = 0.5f;
758
760 if (
s->fft2 && !
s->multi &&
inlink->ch_layout.nb_channels > 1 &&
763
765 int cepstrum_bits = rdft_bits + 2;
769 }
770
776
777 iscale = 0.5f;
781
782 s->cepstrum_len = 1 << cepstrum_bits;
784 if (!
s->cepstrum_buf)
787 if (!
s->cepstrum_tbuf)
789 }
790
792 s->analysis_rdft_len = 1 << rdft_bits;
793 if (
inlink->sample_rate <=
s->accuracy *
s->analysis_rdft_len)
794 break;
795 }
796
800 }
801
802 iscale = 0.5f;
805
813 }
814
815 s->analysis_buf =
av_malloc_array((
s->analysis_rdft_len + 2),
sizeof(*
s->analysis_buf));
816 s->analysis_tbuf =
av_malloc_array(
s->analysis_rdft_len + 2,
sizeof(*
s->analysis_tbuf));
817 s->kernel_tmp_buf =
av_malloc_array((
s->rdft_len * 2) * (
s->multi ?
inlink->ch_layout.nb_channels : 1),
sizeof(*
s->kernel_tmp_buf));
819 s->kernel_buf =
av_malloc_array((
s->rdft_len * 2) * (
s->multi ?
inlink->ch_layout.nb_channels : 1),
sizeof(*
s->kernel_buf));
821 s->conv_buf =
av_calloc(2 *
s->rdft_len *
inlink->ch_layout.nb_channels,
sizeof(*
s->conv_buf));
823 if (!
s->analysis_buf || !
s->analysis_tbuf || !
s->kernel_tmp_buf || !
s->kernel_buf || !
s->conv_buf || !
s->conv_idx || !
s->kernel_tmp_tbuf || !
s->tx_buf)
825
826 av_log(
ctx,
AV_LOG_DEBUG,
"sample_rate = %d, channels = %d, analysis_rdft_len = %d, rdft_len = %d, fir_len = %d, nsamples_max = %d.\n",
827 inlink->sample_rate,
inlink->ch_layout.nb_channels,
s->analysis_rdft_len,
s->rdft_len,
s->fir_len,
s->nsamples_max);
828
831
833 }
834
836 {
839 int ch;
840
842 for (ch = 0; ch + 1 <
inlink->ch_layout.nb_channels &&
s->fft_ctx; ch += 2) {
844 s->conv_idx + ch, (
float *)
frame->extended_data[ch],
845 (
float *)
frame->extended_data[ch+1],
frame->nb_samples);
846 }
847
848 for ( ; ch <
inlink->ch_layout.nb_channels; ch++) {
850 s->conv_buf + 2 * ch *
s->rdft_len,
s->conv_idx + ch,
851 (
float *)
frame->extended_data[ch],
frame->nb_samples);
852 }
853 } else {
854 for (ch = 0; ch <
inlink->ch_layout.nb_channels; ch++) {
856 s->conv_buf + 2 * ch *
s->rdft_len,
s->conv_idx + ch,
857 (
float *)
frame->extended_data[ch],
frame->nb_samples);
858 }
859 }
860
864 if (
s->zero_phase && !
s->min_phase)
866 }
867 s->frame_nsamples_max =
FFMAX(
s->frame_nsamples_max,
frame->nb_samples);
869 }
870
872 {
876
880
883
886 s->remaining -=
frame->nb_samples;
888 }
889
891 }
892
894 char *res,
int res_len,
int flags)
895 {
898
899 if (!strcmp(cmd, "gain")) {
900 char *gain_cmd;
901
904 return 0;
905 }
906
908 if (!gain_cmd)
910
914 s->gain_cmd = gain_cmd;
915 } else {
917 }
918 } else if (!strcmp(cmd, "gain_entry")) {
919 char *gain_entry_cmd;
920
923 return 0;
924 }
925
927 if (!gain_entry_cmd)
929
933 s->gain_entry_cmd = gain_entry_cmd;
934 } else {
936 }
937 }
938
940 }
941
943 {
949 },
950 };
951
953 {
957 },
958 };
959
961 .
p.
name =
"firequalizer",
963 .p.priv_class = &firequalizer_class,
970 };