1 /*
2 * AAC encoder twoloop coder
3 * Copyright (C) 2008-2009 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * AAC encoder twoloop coder
25 * @author Konstantin Shishkov, Claudio Freire
26 */
27
28 /**
29 * This file contains a template for the twoloop coder function.
30 * It needs to be provided, externally, as an already included declaration,
31 * the following functions from aacenc_quantization/util.h. They're not included
32 * explicitly here to make it possible to provide alternative implementations:
33 * - quantize_band_cost
34 * - abs_pow34_v
35 * - find_max_val
36 * - find_min_book
37 * - find_form_factor
38 */
39
40 #ifndef AVCODEC_AACCODER_TWOLOOP_H
41 #define AVCODEC_AACCODER_TWOLOOP_H
42
52
53 /** Frequency in Hz for lower limit of noise substitution **/
54 #define NOISE_LOW_LIMIT 4000
55
56 #define sclip(x) av_clip(x,60,218)
57
58 /* Reflects the cost to change codebooks */
60 {
61 return (!g || !sce->
zeroes[w*16+g-1] || !sce->
can_pns[w*16+g-1]) ? 9 : 5;
62 }
63
64 /**
65 * two-loop quantizers search taken from ISO 13818-7 Appendix C
66 */
70 const float lambda)
71 {
72 int start = 0, i, w, w2,
g, recomprd;
75 * (lambda / 120.f);
76 int refbits = destbits;
77 int toomanybits, toofewbits;
78 char nzs[128];
80 int maxsf[128];
81 float dists[128] = { 0 }, qenergies[128] = { 0 }, uplims[128], euplims[128], energies[128];
82 float maxvals[128], spread_thr_r[128];
83 float min_spread_thr_r, max_spread_thr_r;
84
85 /**
86 * rdlambda controls the maximum tolerated distortion. Twoloop
87 * will keep iterating until it fails to lower it or it reaches
88 * ulimit * rdlambda. Keeping it low increases quality on difficult
89 * signals, but lower it too much, and bits will be taken from weak
90 * signals, creating "holes". A balance is necesary.
91 * rdmax and rdmin specify the relative deviation from rdlambda
92 * allowed for tonality compensation
93 */
94 float rdlambda = av_clipf(2.0f * 120.f / lambda, 0.0625f, 16.0f);
95 const float nzslope = 1.5f;
96 float rdmin = 0.03125f;
97 float rdmax = 1.0f;
98
99 /**
100 * sfoffs controls an offset of optmium allocation that will be
101 * applied based on lambda. Keep it real and modest, the loop
102 * will take care of the rest, this just accelerates convergence
103 */
104 float sfoffs = av_clipf(
log2f(120.0f / lambda) * 4.0f, -5, 10);
105
106 int fflag, minscaler, maxscaler, nminscaler;
107 int its = 0;
108 int maxits = 30;
109 int allz = 0;
110 int tbits;
111 int cutoff = 1024;
112 int pns_start_pos;
113 int prev;
114
115 /**
116 * zeroscale controls a multiplier of the threshold, if band energy
117 * is below this, a zero is forced. Keep it lower than 1, unless
118 * low lambda is used, because energy < threshold doesn't mean there's
119 * no audible signal outright, it's just energy. Also make it rise
120 * slower than rdlambda, as rdscale has due compensation with
121 * noisy band depriorization below, whereas zeroing logic is rather dumb
122 */
123 float zeroscale;
124 if (lambda > 120.f) {
125 zeroscale = av_clipf(
powf(120.f / lambda, 0.25f), 0.0625f, 1.0f);
126 } else {
127 zeroscale = 1.f;
128 }
129
131 /**
132 * Psy granted us extra bits to use, from the reservoire
133 * adjust for lambda except what psy already did
134 */
137 }
138
140 /**
141 * Constant Q-scale doesn't compensate MS coding on its own
142 * No need to be overly precise, this only controls RD
143 * adjustment CB limits when going overboard
144 */
146 destbits *= 2;
147
148 /**
149 * When using a constant Q-scale, don't adjust bits, just use RD
150 * Don't let it go overboard, though... 8x psy target is enough
151 */
152 toomanybits = 5800;
153 toofewbits = destbits / 16;
154
155 /** Don't offset scalers, just RD */
157 rdlambda = sqrtf(rdlambda);
158
159 /** search further */
160 maxits *= 2;
161 } else {
162 /* When using ABR, be strict, but a reasonable leeway is
163 * critical to allow RC to smoothly track desired bitrate
164 * without sudden quality drops that cause audible artifacts.
165 * Symmetry is also desirable, to avoid systematic bias.
166 */
167 toomanybits = destbits + destbits/8;
168 toofewbits = destbits - destbits/8;
169
170 sfoffs = 0;
171 rdlambda = sqrtf(rdlambda);
172 }
173
174 /** and zero out above cutoff frequency */
175 {
177 int bandwidth;
178
179 /**
180 * Scale, psy gives us constant quality, this LP only scales
181 * bitrate by lambda, so we save bits on subjectively unimportant HF
182 * rather than increase quantization noise. Adjust nominal bitrate
183 * to effective bitrate according to encoding parameters,
184 * AAC_CUTOFF_FROM_BITRATE is calibrated for effective bitrate.
185 */
186 float rate_bandwidth_multiplier = 1.5f;
188 ? (refbits * rate_bandwidth_multiplier * avctx->
sample_rate / 1024)
190
191 /** Compensate for extensions that increase efficiency */
193 frame_bit_rate *= 1.15f;
194
196 bandwidth = avctx->
cutoff;
197 } else {
200 }
201
202 cutoff = bandwidth * 2 * wlen / avctx->
sample_rate;
204 }
205
206 /**
207 * for values above this the decoder might end up in an endless loop
208 * due to always having more bits than what can be encoded.
209 */
210 destbits =
FFMIN(destbits, 5800);
211 toomanybits =
FFMIN(toomanybits, 5800);
212 toofewbits =
FFMIN(toofewbits, 5800);
213 /**
214 * XXX: some heuristic to determine initial quantizers will reduce search time
215 * determine zero bands and upper distortion limits
216 */
217 min_spread_thr_r = -1;
218 max_spread_thr_r = -1;
221 int nz = 0;
222 float uplim = 0.0f, energy = 0.0f, spread = 0.0f;
226 sce->
zeroes[(w+w2)*16+g] = 1;
227 continue;
228 }
229 nz = 1;
230 }
231 if (!nz) {
232 uplim = 0.0f;
233 } else {
234 nz = 0;
238 continue;
242 nz++;
243 }
244 }
245 uplims[w*16+
g] = uplim;
246 energies[w*16+
g] = energy;
249 allz |= nz;
250 if (nz && sce->
can_pns[w*16+g]) {
251 spread_thr_r[w*16+
g] = energy * nz / (uplim * spread);
252 if (min_spread_thr_r < 0) {
253 min_spread_thr_r = max_spread_thr_r = spread_thr_r[w*16+
g];
254 } else {
255 min_spread_thr_r =
FFMIN(min_spread_thr_r, spread_thr_r[w*16+g]);
256 max_spread_thr_r =
FFMAX(max_spread_thr_r, spread_thr_r[w*16+g]);
257 }
258 }
259 }
260 }
261
262 /** Compute initial scalers */
263 minscaler = 65535;
266 if (sce->
zeroes[w*16+g]) {
268 continue;
269 }
270 /**
271 * log2f-to-distortion ratio is, technically, 2 (1.5db = 4, but it's power vs level so it's 2).
272 * But, as offsets are applied, low-frequency signals are too sensitive to the induced distortion,
273 * so we make scaling more conservative by choosing a lower log2f-to-distortion ratio, and thus
274 * more robust.
275 */
279 + sfoffs,
282 }
283 }
284
285 /** Clip */
291
292 if (!allz)
293 return;
296
298 start = w*128;
303 }
304 }
305
306 /**
307 * Scale uplims to match rate distortion to quality
308 * bu applying noisy band depriorization and tonal band priorization.
309 * Maxval-energy ratio gives us an idea of how noisy/tonal the band is.
310 * If maxval^2 ~ energy, then that band is mostly noise, and we can relax
311 * rate distortion requirements.
312 */
313 memcpy(euplims, uplims, sizeof(euplims));
315 /** psy already priorizes transients to some extent */
317 start = w*128;
319 if (nzs[g] > 0) {
320 float cleanup_factor =
ff_sqrf(av_clipf(start / (cutoff * 0.75f), 1.0f, 2.0f));
325 nzslope * cleanup_factor);
326 energy2uplim *= de_psy_factor;
328 /** In ABR, we need to priorize less and let rate control do its thing */
329 energy2uplim = sqrtf(energy2uplim);
330 }
331 energy2uplim =
FFMAX(0.015625f,
FFMIN(1.0f, energy2uplim));
332 uplims[w*16+
g] *= av_clipf(rdlambda * energy2uplim, rdmin, rdmax)
334
339 2.0f);
340 energy2uplim *= de_psy_factor;
342 /** In ABR, we need to priorize less and let rate control do its thing */
343 energy2uplim = sqrtf(energy2uplim);
344 }
345 energy2uplim =
FFMAX(0.015625f,
FFMIN(1.0f, energy2uplim));
346 euplims[w*16+
g] *= av_clipf(rdlambda * energy2uplim * sce->
ics.
group_len[w],
347 0.5f, 1.0f);
348 }
350 }
351 }
352
353 for (i = 0; i < sizeof(maxsf) / sizeof(maxsf[0]); ++i)
355
356 //perform two-loop search
357 //outer loop - improve quality
358 do {
359 //inner loop - quantize spectrum to fit into given number of bits
360 int overdist;
361 int qstep = its ? 1 : 32;
362 do {
363 int changed = 0;
364 prev = -1;
365 recomprd = 0;
366 tbits = 0;
368 start = w*128;
374 float dist = 0.0f;
375 float qenergy = 0.0f;
376
377 if (sce->
zeroes[w*16+g] || sce->
sf_idx[w*16+g] >= 218) {
380 /** PNS isn't free */
382 }
383 continue;
384 }
388 float sqenergy;
390 scaled + w2*128,
393 cb,
394 1.0f,
396 &b, &sqenergy,
397 0);
399 qenergy += sqenergy;
400 }
401 dists[w*16+
g] = dist -
bits;
402 qenergies[w*16+
g] = qenergy;
403 if (prev != -1) {
406 }
410 }
411 }
412 if (tbits > toomanybits) {
413 recomprd = 1;
414 for (i = 0; i < 128; i++) {
417 int new_sf =
FFMIN(maxsf_i, sce->
sf_idx[i] + qstep);
418 if (new_sf != sce->
sf_idx[i]) {
420 changed = 1;
421 }
422 }
423 }
424 } else if (tbits < toofewbits) {
425 recomprd = 1;
426 for (i = 0; i < 128; i++) {
429 if (new_sf != sce->
sf_idx[i]) {
431 changed = 1;
432 }
433 }
434 }
435 }
436 qstep >>= 1;
437 if (!qstep && tbits > toomanybits && sce->
sf_idx[0] < 217 && changed)
438 qstep = 1;
439 } while (qstep);
440
441 overdist = 1;
442 fflag = tbits < toofewbits;
443 for (i = 0; i < 2 && (overdist || recomprd); ++i) {
444 if (recomprd) {
445 /** Must recompute distortion */
446 prev = -1;
447 tbits = 0;
449 start = w*128;
455 float dist = 0.0f;
456 float qenergy = 0.0f;
457
458 if (sce->
zeroes[w*16+g] || sce->
sf_idx[w*16+g] >= 218) {
461 /** PNS isn't free */
463 }
464 continue;
465 }
469 float sqenergy;
471 scaled + w2*128,
474 cb,
475 1.0f,
477 &b, &sqenergy,
478 0);
480 qenergy += sqenergy;
481 }
482 dists[w*16+
g] = dist -
bits;
483 qenergies[w*16+
g] = qenergy;
484 if (prev != -1) {
487 }
491 }
492 }
493 }
494 if (!i && s->
options.
pns && its > maxits/2 && tbits > toofewbits) {
495 float maxoverdist = 0.0f;
496 float ovrfactor = 1.f+(maxits-its)*16.f/maxits;
497 overdist = recomprd = 0;
501 float ovrdist = dists[w*16+
g] /
FFMAX(uplims[w*16+g],euplims[w*16+g]);
502 maxoverdist =
FFMAX(maxoverdist, ovrdist);
503 overdist++;
504 }
505 }
506 }
507 if (overdist) {
508 /* We have overdistorted bands, trade for zeroes (that can be noise)
509 * Zero the bands in the lowest 1.25% spread-energy-threshold ranking
510 */
511 float minspread = max_spread_thr_r;
512 float maxspread = min_spread_thr_r;
513 float zspread;
514 int zeroable = 0;
515 int zeroed = 0;
516 int maxzeroed, zloop;
519 if (start >= pns_start_pos && !sce->
zeroes[w*16+g] && sce->
can_pns[w*16+g]) {
520 minspread =
FFMIN(minspread, spread_thr_r[w*16+g]);
521 maxspread =
FFMAX(maxspread, spread_thr_r[w*16+g]);
522 zeroable++;
523 }
524 }
525 }
526 zspread = (maxspread-minspread) * 0.0125f + minspread;
527 /* Don't PNS everything even if allowed. It suppresses bit starvation signals from RC,
528 * and forced the hand of the later search_for_pns step.
529 * Instead, PNS a fraction of the spread_thr_r range depending on how starved for bits we are,
530 * and leave further PNSing to search_for_pns if worthwhile.
531 */
532 zspread =
FFMIN3(min_spread_thr_r * 8.f, zspread,
533 ((toomanybits - tbits) * min_spread_thr_r + (tbits - toofewbits) * max_spread_thr_r) / (toomanybits - toofewbits + 1));
534 maxzeroed =
FFMIN(zeroable,
FFMAX(1, (zeroable * its + maxits - 1) / (2 * maxits)));
535 for (zloop = 0; zloop < 2; zloop++) {
536 /* Two passes: first distorted stuff - two birds in one shot and all that,
537 * then anything viable. Viable means not zero, but either CB=zero-able
538 * (too high SF), not SF <= 1 (that means we'd be operating at very high
539 * quality, we don't want PNS when doing VHQ), PNS allowed, and within
540 * the lowest ranking percentile.
541 */
542 float loopovrfactor = (zloop) ? 1.0f : ovrfactor;
544 int mcb;
545 for (g = sce->
ics.
num_swb-1; g > 0 && zeroed < maxzeroed; g--) {
547 continue;
549 if (!sce->
zeroes[w*16+g] && sce->
can_pns[w*16+g] && spread_thr_r[w*16+g] <= zspread
550 && sce->
sf_idx[w*16+g] > loopminsf
551 && (dists[w*16+g] > loopovrfactor*uplims[w*16+g] || !(mcb =
find_min_book(maxvals[w*16+g], sce->
sf_idx[w*16+g]))
552 || (mcb <= 1 && dists[w*16+g] >
FFMIN(uplims[w*16+g], euplims[w*16+g]))) ) {
555 zeroed++;
556 }
557 }
558 }
559 }
560 if (zeroed)
561 recomprd = fflag = 1;
562 } else {
563 overdist = 0;
564 }
565 }
566 }
567
569 maxscaler = 0;
572 if (!sce->
zeroes[w*16+g]) {
575 }
576 }
577 }
578
580 prev = -1;
582 /** Start with big steps, end up fine-tunning */
583 int depth = (its > maxits/2) ? ((its > maxits*2/3) ? 1 : 3) : 10;
584 int edepth = depth+2;
585 float uplmax = its / (maxits*0.25f) + 1.0f;
586 uplmax *= (tbits > destbits) ?
FFMIN(2.0f, tbits / (
float)
FFMAX(1,destbits)) : 1.0f;
587 start = w * 128;
589 int prevsc = sce->
sf_idx[w*16+
g];
590 if (prev < 0 && !sce->zeroes[w*16+g])
592 if (!sce->
zeroes[w*16+g]) {
598 if ((!cmb || dists[w*16+g] > uplims[w*16+g]) && sce->
sf_idx[w*16+g] > mindeltasf) {
599 /* Try to make sure there is some energy in every nonzero band
600 * NOTE: This algorithm must be forcibly imbalanced, pushing harder
601 * on holes or more distorted bands at first, otherwise there's
602 * no net gain (since the next iteration will offset all bands
603 * on the opposite direction to compensate for extra bits)
604 */
605 for (i = 0; i < edepth && sce->
sf_idx[w*16+
g] > mindeltasf; ++i) {
607 float dist, qenergy;
610 dist = qenergy = 0.f;
611 bits = 0;
612 if (!cb) {
613 maxsf[w*16+
g] =
FFMIN(sce->
sf_idx[w*16+g]-1, maxsf[w*16+g]);
614 } else if (i >= depth && dists[w*16+g] < euplims[w*16+g]) {
615 break;
616 }
617 /* !g is the DC band, it's important, since quantization error here
618 * applies to less than a cycle, it creates horrible intermodulation
619 * distortion if it doesn't stick to what psy requests
620 */
621 if (!g && sce->
ics.
num_windows > 1 && dists[w*16+g] >= euplims[w*16+g])
622 maxsf[w*16+
g] =
FFMIN(sce->
sf_idx[w*16+g], maxsf[w*16+g]);
625 float sqenergy;
627 scaled + w2*128,
630 cb,
631 1.0f,
633 &b, &sqenergy,
634 0);
636 qenergy += sqenergy;
637 }
639 dists[w*16+
g] = dist -
bits;
640 qenergies[w*16+
g] = qenergy;
641 if (mb && (sce->
sf_idx[w*16+g] < mindeltasf || (
642 (dists[w*16+g] <
FFMIN(uplmax*uplims[w*16+g], euplims[w*16+g]))
643 && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
644 ) )) {
645 break;
646 }
647 }
648 }
else if (tbits > toofewbits && sce->
sf_idx[w*16+g] <
FFMIN(maxdeltasf, maxsf[w*16+g])
649 && (dists[w*16+g] <
FFMIN(euplims[w*16+g], uplims[w*16+g]))
650 && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
651 ) {
652 /** Um... over target. Save bits for more important stuff. */
653 for (i = 0; i < depth && sce->
sf_idx[w*16+
g] < maxdeltasf; ++i) {
655 float dist, qenergy;
657 if (cb > 0) {
658 dist = qenergy = 0.f;
659 bits = 0;
662 float sqenergy;
664 scaled + w2*128,
667 cb,
668 1.0f,
670 &b, &sqenergy,
671 0);
673 qenergy += sqenergy;
674 }
676 if (dist <
FFMIN(euplims[w*16+g], uplims[w*16+g])) {
678 dists[w*16+
g] = dist;
679 qenergies[w*16+
g] = qenergy;
680 } else {
681 break;
682 }
683 } else {
684 maxsf[w*16+
g] =
FFMIN(sce->
sf_idx[w*16+g], maxsf[w*16+g]);
685 break;
686 }
687 }
688 }
689 prev = sce->
sf_idx[w*16+
g] = av_clip(sce->
sf_idx[w*16+g], mindeltasf, maxdeltasf);
690 if (sce->
sf_idx[w*16+g] != prevsc)
691 fflag = 1;
692 nminscaler =
FFMIN(nminscaler, sce->
sf_idx[w*16+g]);
694 }
696 }
697 }
698
699 /** SF difference limit violation risk. Must re-clamp. */
700 prev = -1;
703 if (!sce->
zeroes[w*16+g]) {
704 int prevsf = sce->
sf_idx[w*16+
g];
705 if (prev < 0)
706 prev = prevsf;
710 if (!fflag && prevsf != sce->
sf_idx[w*16+g])
711 fflag = 1;
712 }
713 }
714 }
715
716 its++;
717 } while (fflag && its < maxits);
718
719 /** Scout out next nonzero bands */
721
722 prev = -1;
724 /** Make sure proper codebooks are set */
726 if (!sce->
zeroes[w*16+g]) {
730 /** Cannot zero out, make sure it's not attempted */
732 } else {
735 }
736 }
737 } else {
739 }
740 /** Check that there's no SF delta range violations */
741 if (!sce->
zeroes[w*16+g]) {
742 if (prev != -1) {
745 }
else if (sce->
zeroes[0]) {
746 /** Set global gain to something useful */
748 }
750 }
751 }
752 }
753 }
754
755 #endif /* AVCODEC_AACCODER_TWOLOOP_H */
void ff_quantize_band_cost_cache_init(struct AACEncContext *s)
enum RawDataBlockType cur_type
channel group type cur_channel belongs to
static void abs_pow34_v(float *out, const float *in, const int size)
int64_t bit_rate
the average bitrate
#define SCALE_DIFF_ZERO
codebook index corresponding to zero scalefactor indices difference
#define AAC_CUTOFF_FROM_BITRATE(bit_rate, channels, sample_rate)
FFPsyBand psy_bands[PSY_MAX_BANDS]
channel bands information
#define SCALE_MAX_POS
scalefactor index maximum value
#define SCALE_MAX_DIFF
maximum scalefactor difference allowed by standard
static int ff_sfdelta_can_remove_band(const SingleChannelElement *sce, const uint8_t *nextband, int prev_sf, int band)
int alloc
number of bits allocated by the psy, or -1 if no allocation was done
static int ff_pns_bits(SingleChannelElement *sce, int w, int g)
const uint16_t * swb_offset
table of offsets to the lowest spectral coefficient of a scalefactor band, sfb, for a particular wind...
static double cb(void *priv, double x, double y)
AACEncOptions options
encoding options
static float find_form_factor(int group_len, int swb_size, float thresh, const float *scaled, float nzslope)
const uint8_t ff_aac_scalefactor_bits[121]
single band psychoacoustic information
struct FFPsyContext::@81 bitres
int flags
AV_CODEC_FLAG_*.
#define CODEC_FLAG_QSCALE
int num_swb
number of scalefactor window bands
#define SCALE_DIV_512
scalefactor difference that corresponds to scale difference in 512 times
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
int cur_channel
current channel for coder context
uint8_t can_pns[128]
band is allowed to PNS (informative)
static void ff_init_nextband_map(const SingleChannelElement *sce, uint8_t *nextband)
AAC definitions and structures.
static av_const float ff_sqrf(float a)
Libavcodec external API header.
static int find_min_book(float maxval, int sf)
int sample_rate
samples per second
main external API structure.
IndividualChannelStream ics
const uint8_t * swb_sizes
table of scalefactor band sizes for a particular window
int cutoff
lowpass frequency cutoff for analysis
int global_quality
Global quality for codecs which cannot change it per frame.
uint8_t zeroes[128]
band is not coded (used by encoder)
int sf_idx[128]
scalefactor indices (used by encoder)
INTFLOAT coeffs[1024]
coefficients for IMDCT, maybe processed
#define SCALE_ONE_POS
scalefactor index that corresponds to scale=1.0
static void search_for_quantizers_twoloop(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda)
two-loop quantizers search taken from ISO 13818-7 Appendix C
Single Channel Element - used for both SCE and LFE elements.
int cutoff
Audio cutoff bandwidth (0 means "automatic")
int channels
number of audio channels
FFPsyChannel * ch
single channel information
enum BandType band_type[128]
band types
static float find_max_val(int group_len, int swb_size, const float *scaled)
static float quantize_band_cost_cached(struct AACEncContext *s, int w, int g, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, int *bits, float *energy, int rtz)
float scoefs[1024]
scaled coefficients
#define NOISE_LOW_LIMIT
This file contains a template for the twoloop coder function.