Jump to content
Wikipedia The Free Encyclopedia

SymbolicC++

From Wikipedia, the free encyclopedia
Computer algebra system
SymbolicC++
Developers Yorick Hardy, Willi-Hans Steeb and Tan Kiat Shi
Stable release
3.35 / September 15, 2010; 15 years ago (2010年09月15日)
Written inC++
Operating system Cross-platform
Type Mathematical software
License GPL
Websitehttp://issc.uj.ac.za/symbolic/symbolic.html

SymbolicC++ is a general purpose computer algebra system written in the programming language C++. It is free software released under the terms of the GNU General Public License. SymbolicC++ is used by including a C++ header file or by linking against a library.

Examples

[edit ]
import"symbolicc++.h";
importstd;
usingnamespacestd;
intmain(){
Symbolicx("x");
std::println("{}",integrate(x+1,x));// => 1/2*x^(2)+x
Symbolicy("y");
std::println("{}",df(y,x));// => 0
std::println("{}",df(y[x],x));// => df(y[x],x)
std::println("{}",df(std::exp(std::cos(y[x])),x));// => -sin(y[x])*df(y[x],x)*e^cos(y[x])
return0;
}

The following program fragment inverts the matrix ( cos θ sin θ sin θ cos θ ) {\displaystyle {\begin{pmatrix}\cos \theta &\sin \theta \\-\sin \theta &\cos \theta \end{pmatrix}}} {\displaystyle {\begin{pmatrix}\cos \theta &\sin \theta \\-\sin \theta &\cos \theta \end{pmatrix}}} symbolically.

Symbolictheta("theta");
Symbolicr={
{std::cos(theta),std::sin(theta)},
{-std::sin(theta),std::cos(theta)}
};
std::println(r(0,1));// sin(theta)
SymbolicrInv=r.inverse();
std::println(rInv[(std::cos(theta)^2)==1-(std::sin(theta)^2)]);

The output is

[ cos(theta) −sin(theta) ]
[ sin(theta) cos(theta) ]

The next program illustrates non-commutative symbols in SymbolicC++. Here b is a Bose annihilation operator and bd is a Bose creation operator. The variable vs denotes the vacuum state | 0 {\displaystyle |0\rangle } {\displaystyle |0\rangle }. The ~ operator toggles the commutativity of a variable, i.e. if b is commutative that ~b is non-commutative and if b is non-commutative ~b is commutative.

import"symbolicc++.h";
importstd;
intmain(){
// The operator b is the annihilation operator and bd is the creation operator
Symbolicb("b");
Symbolicbd("bd");
Symbolicvs("vs");
b=~b;
bd=~bd;
vs=~vs;
Equationsrules=(b*bd==bd*b+1,b*vs==0);
// Example 1
Symbolicresult1=b*bd*b*bd;
std::println("result1 = {}",result1.subst_all(rules));
std::println("result1 * vs = {}",(result1*vs).subst_all(rules));
// Example 2
Symbolicresult2=(b+bd)^4;
std::println("result2 = {}",result2.subst_all(rules));
std::println("result2 * vs = {}",(result2*vs).subst_all(rules));
return0;
}

Further examples can be found in the books listed below.[1] [2] [3] [4]

History

[edit ]

SymbolicC++ is described in a series of books on computer algebra. The first book[5] described the first version of SymbolicC++. In this version the main data type for symbolic computation was the Sum class. The list of available classes included

Example:

import"rational.h";
import"msymbol.h";
importstd;
intmain(void){
Sum<int>x("x",1);
Sum<Rational<int>>y("y",1);
std::println("{}",Int(y,y));// => 1/2 yˆ2
y.depend(x);
std::println("{}",df(y,x));// => df(y,x)
return0;
}

The second version[6] of SymbolicC++ featured new classes such as the Polynomial class and initial support for simple integration. Support for the algebraic computation of Clifford algebras was described in using SymbolicC++ in 2002.[7] Subsequently, support for Gröbner bases was added.[8] The third version[4] features a complete rewrite of SymbolicC++ and was released in 2008. This version encapsulates all symbolic expressions in the Symbolic class.

Newer versions are available from the SymbolicC++ website.

See also

[edit ]

References

[edit ]
  1. ^ Steeb, W.-H. (2010). Quantum Mechanics Using Computer Algebra, second edition, World Scientific Publishing, Singapore.
  2. ^ Steeb, W.-H. (2008). The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithm, Gene Expression Programming, Wavelets, Fuzzy Logic with C++, Java and SymbolicC++ Programs, fourth edition, World Scientific Publishing, Singapore.
  3. ^ Steeb, W.-H. (2007). Continuous Symmetries, Lie Algebras, Differential Equations and Computer Algebra, second edition, World Scientific Publishing, Singapore.
  4. ^ a b Hardy, Y, Tan Kiat Shi and Steeb, W.-H. (2008). Computer Algebra with SymbolicC++, World Scientific Publishing, Singapore.
  5. ^ Tan Kiat Shi and Steeb, W.-H. (1997). SymbolicC++: An introduction to Computer Algebra Using Object-Oriented Programming Springer-Verlag, Singapore.
  6. ^ Tan Kiat Shi, Steeb, W.-H. and Hardy, Y (2000). SymbolicC++: An Introduction to Computer Algebra using Object-Oriented Programming, 2nd extended and revised edition, Springer-Verlag, London.
  7. ^ Fletcher, J.P. (2002). Symbolic Processing of Clifford Numbers in C++
    in Doran C., Dorst L. and Lasenby J. (eds.) Applied Geometrical Algebras in computer Science and Engineering AGACSE 2001, Birkhauser, Basel.
    http://www.ceac.aston.ac.uk/research/staff/jpf/papers/paper25/index.php
  8. ^ Kruger, P.J.M (2003). Gröbner bases with Symbolic C++, M. Sc. Dissertation, Rand Afrikaans University.
[edit ]

AltStyle によって変換されたページ (->オリジナル) /