Shehu transform
In mathematics, the Shehu transform is an integral transform which generalizes both the Laplace transform and the Sumudu integral transform. It was introduced by Shehu Maitama and Weidong Zhao[1] [2] [3] in 2019 and applied to both ordinary and partial differential equations.[4] [3] [5] [6] [7] [8]
Formal definition
[edit ]The Shehu transform of a function {\displaystyle f(t)} is defined over the set of functions
{\displaystyle A=\{f(t):\exists M,p_{1},p_{2}>0,|f(t)|<M\exp(|t|/p_{i}),,円,円,円{\text{if}},円,円,円t\in (-1)^{i}\times [0,,円\infty )\}}
as
{\displaystyle \mathbb {S} [f(t)]=F(s,u)=\int _{0}^{\infty }\exp \left(-{\frac {st}{u}}\right)f(t),円dt=\lim _{\alpha \rightarrow \infty }\int _{0}^{\alpha }\exp \left(-{\frac {st}{u}}\right)f(t),円dt,,円s>0,,円u>0,,円,円,円,円(1)}
where {\displaystyle s} and {\displaystyle u} are the Shehu transform variables.[1] The Shehu transform converges to Laplace transform when the variable {\displaystyle u=1}.
Inverse Shehu transform
[edit ]The inverse Shehu transform of the function {\displaystyle f(t)} is defined as
{\displaystyle f(t)=\mathbb {S} ^{-1}[F(s,u)]=\lim _{\beta \rightarrow \infty }{\frac {1}{2\pi i}}\int _{\alpha -i\beta }^{\alpha +i\beta }{\frac {1}{u}}\exp \left({\frac {st}{u}}\right)F(s,u)ds,,円,円,円,円(2)}
where {\displaystyle s} is a complex number and {\displaystyle \alpha } is a real number.[1]
Properties and theorems
[edit ]| Property | Explanation |
|---|---|
| Linearity | Let the functions {\displaystyle \alpha f(t)} and {\displaystyle \beta w(t)} be in set A. Then {\displaystyle {\mathbb {S} }\left[\alpha f(t)+\beta w(t)\right]=\alpha {\mathbb {S} }\left[f(t)\right]+\beta {\mathbb {S} }\left[w(t)\right].} |
| Change of scale | Let the function {\displaystyle f(\beta t)} be in set A, where {\displaystyle \beta } in an arbitrary constant. Then {\displaystyle {\mathbb {S} }\left[f(\beta t)\right]={\frac {1}{\beta }}F\left({\frac {s}{\beta }},u\right).} |
| Exponential shifting | Let the function {\displaystyle \exp \left(\alpha t\right)f(t)} be in set A and {\displaystyle \alpha } is an arbitrary constant. Then {\displaystyle {\mathbb {S} }\left[\exp \left(\alpha t\right)f(t)\right]=F(s-\alpha u,u).} |
| Multiple shift | Let {\displaystyle {\mathbb {S} }\left[f(t)\right]=F(s,u)} and {\displaystyle f(t)\in A}. Then {\displaystyle {\mathbb {S} }\left[t^{n}f(t)\right]=(-u)^{n}{\frac {d^{n}}{ds^{n}}}F(s,u).} |
Theorems
[edit ]Shehu transform of integral
[edit ]{\displaystyle {\mathbb {S} }\left[\int _{0}^{t}f(\zeta )d\zeta \right]={\frac {u}{s}}F(s,u),}
where {\displaystyle {\mathbb {S} }\left[f(\zeta )\right]=F(s,u)} and {\displaystyle f(\zeta )\in A.}[1] [3]
nth derivatives of Shehu transform
[edit ]If the function {\displaystyle f^{(n)}(t)} is the nth derivative of the function {\displaystyle f(t)\in A} with respect to {\displaystyle t}, then {\displaystyle {\mathbb {S} }\left[f^{(n)}(t)\right]=\left({\frac {s}{u}}\right)^{n}F(s,u)-\sum _{k=0}^{n-1}\left({\frac {s}{u}}\right)^{n-(k+1)}f^{(k)}(0).}[1] [3]
Convolution theorem of Shehu transform
[edit ]Let the functions {\displaystyle f(t)} and {\displaystyle g(t)} be in set A. If {\displaystyle F(s,u)} and {\displaystyle G(s,u)} are the Shehu transforms of the functions {\displaystyle f(t)} and {\displaystyle g(t)} respectively. Then
{\displaystyle {\mathbb {S} }\left[(f*g)(t)\right]=F(s,u)G(s,u).}
Where {\displaystyle f*g} is the convolution of two functions {\displaystyle f(t)} and {\displaystyle g(t)} which is defined as
{\displaystyle \int _{0}^{t}f(\tau )g(t-\tau )d\tau =\int _{0}^{t}f(t-\tau )g(\tau )d\tau .}[1] [3]
References
[edit ]- ^ a b c d e f g Maitama, Shehu; Zhao, Weidong (2019年02月24日). "New Integral Transform: Shehu Transform a Generalization of Sumudu and Laplace Transform for Solving Differential Equations". International Journal of Analysis and Applications. 17 (2): 167–190. ISSN 2291-8639.
- ^ Maitama, Shehu; Zhao, Weidong (2021). "New Laplace-type integral transform for solving steady heat-transfer problem". Thermal Science. 25 (1 Part A): 1–12. arXiv:1905.06157 . doi:10.2298/TSCI180110160M.
- ^ a b c d e f Maitama, Shehu; Zhao, Weidong (2021年03月16日). "Homotopy analysis Shehu transform method for solving fuzzy differential equations of fractional and integer order derivatives" . Computational and Applied Mathematics. 40 (3): 86. doi:10.1007/s40314-021-01476-9. ISSN 1807-0302.
- ^ Akinyemi, Lanre; Iyiola, Olaniyi S. (2020). "Exact and approximate solutions of time-fractional models arising from physics via Shehu transform" . Mathematical Methods in the Applied Sciences. 43 (12): 7442–7464. Bibcode:2020MMAS...43.7442A. doi:10.1002/mma.6484. ISSN 1099-1476.
- ^ Yadav, L. K.; Agarwal, G.; Gour, M. M.; Akgül, A.; Misro, Md Yushalify; Purohit, S. D. (2024年04月01日). "A hybrid approach for non-linear fractional Newell-Whitehead-Segel model". Ain Shams Engineering Journal. 15 (4) 102645. doi:10.1016/j.asej.2024.102645 . ISSN 2090-4479.
- ^ Sartanpara, Parthkumar P.; Meher, Ramakanta (2023年01月01日). "A robust computational approach for Zakharov-Kuznetsov equations of ion-acoustic waves in a magnetized plasma via the Shehu transform". Journal of Ocean Engineering and Science. 8 (1): 79–90. Bibcode:2023JOES....8...79S. doi:10.1016/j.joes.202111006 . ISSN 2468-0133.
- ^ Abujarad, Eman S.; Jarad, Fahd; Abujarad, Mohammed H.; Baleanu, Dumitru (August 2022). "APPLICATION OF q-SHEHU TRANSFORM ON q-FRACTIONAL KINETIC EQUATION INVOLVING THE GENERALIZED HYPER-BESSEL FUNCTION". Fractals. 30 (5): 2240179–2240240. Bibcode:2022Fract..3040179A. doi:10.1142/S0218348X2240179X . ISSN 0218-348X.
- ^ Mlaiki, Nabil; Jamal, Noor; Sarwar, Muhammad; Hleili, Manel; Ansari, Khursheed J. (2025年04月29日). "Duality of Shehu transform with other well known transforms and application to fractional order differential equations". PLOS ONE. 20 (4) e0318157. Bibcode:2025PLoSO..2018157M. doi:10.1371/journal.pone.0318157 . ISSN 1932-6203. PMC 12040285 . PMID 40299951.
This mathematics-related article is a stub. You can help Wikipedia by expanding it.