Sheaf on an algebraic stack
In algebraic geometry, a quasi-coherent sheaf on an algebraic stack {\displaystyle {\mathfrak {X}}} is a generalization of a quasi-coherent sheaf on a scheme. The most concrete description is that it is a data that consists of, for each a scheme S in the base category and {\displaystyle \xi } in {\displaystyle {\mathfrak {X}}(S)}, a quasi-coherent sheaf {\displaystyle F_{\xi }} on S together with maps implementing the compatibility conditions among {\displaystyle F_{\xi }}'s.
For a Deligne–Mumford stack, there is a simpler description in terms of a presentation {\displaystyle U\to {\mathfrak {X}}}: a quasi-coherent sheaf on {\displaystyle {\mathfrak {X}}} is one obtained by descending a quasi-coherent sheaf on U.[1] A quasi-coherent sheaf on a Deligne–Mumford stack generalizes an orbibundle (in a sense).
Constructible sheaves (e.g., as l-adic sheaves) can also be defined on an algebraic stack and they appear as coefficients of cohomology of a stack.
Definition
[edit ]The following definition is (Arbarello, Cornalba & Griffiths 2011, Ch. XIII., Definition 2.1.)
Let {\displaystyle {\mathfrak {X}}} be a category fibered in groupoids over the category of schemes of finite type over a field with the structure functor p. Then a quasi-coherent sheaf on {\displaystyle {\mathfrak {X}}} is the data consisting of:
- for each object {\displaystyle \xi }, a quasi-coherent sheaf {\displaystyle F_{\xi }} on the scheme {\displaystyle p(\xi )},
- for each morphism {\displaystyle H:\xi \to \eta } in {\displaystyle {\mathfrak {X}}} and {\displaystyle h=p(H):p(\xi )\to p(\eta )} in the base category, an isomorphism
- {\displaystyle \rho _{H}:h^{*}(F_{\eta }){\overset {\simeq }{\to }}F_{\xi }}
- satisfying the cocycle condition: for each pair {\displaystyle H_{1}:\xi _{1}\to \xi _{2},H_{2}:\xi _{2}\to \xi _{3}},
- {\displaystyle h_{1}^{*}h_{2}^{*}F_{\xi _{3}}{\overset {h_{1}^{*}(\rho _{H_{2}})}{\to }}h_{1}^{*}F_{\xi _{2}}{\overset {\rho _{H_{1}}}{\to }}F_{\xi _{1}}} equals {\displaystyle h_{1}^{*}h_{2}^{*}F_{\xi _{3}}{\overset {\sim }{=}}(h_{2}\circ h_{1})^{*}F_{\xi _{3}}{\overset {\rho _{H_{2}\circ H_{1}}}{\to }}F_{\xi _{1}}}.
(cf. equivariant sheaf.)
Examples
[edit ]- The Hodge bundle on the moduli stack of algebraic curves of fixed genus.
l-adic formalism
[edit ]The l-adic formalism (theory of l-adic sheaves) extends to algebraic stacks.
See also
[edit ]- Hopf algebroid - encodes the data of quasi-coherent sheaves on a prestack presentable as a groupoid internal to affine schemes (or projective schemes using graded Hopf algebroids)
Notes
[edit ]- ^ Arbarello, Cornalba & Griffiths 2011, Ch. XIII., § 2.
References
[edit ]- Arbarello, Enrico; Griffiths, Phillip (2011). Geometry of algebraic curves. Vol. II, with a contribution by Joseph Daniel Harris. Grundlehren der mathematischen Wissenschaften. Vol. 268. doi:10.1007/978-3-540-69392-5. ISBN 978-3-540-42688-2. MR 2807457.
- Behrend, Kai A. (2003). "Derived l-adic categories for algebraic stacks". Memoirs of the American Mathematical Society. 163 (774). doi:10.1090/memo/0774 .
- Laumon, Gérard; Moret-Bailly, Laurent (2000). Champs algébriques. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Vol. 39. Berlin, New York: Springer-Verlag. doi:10.1007/978-3-540-24899-6. ISBN 978-3-540-65761-3. MR 1771927.
- Olsson, Martin (2007). "Sheaves on Artin stacks". Journal für die reine und angewandte Mathematik (Crelle's Journal). 2007 (603): 55–112. doi:10.1515/CRELLE.2007.012. S2CID 15445962. Editorial note: This paper corrects a mistake in Laumon and Moret-Bailly's Champs algébriques.
- Rydh, David (2016). "Approximation of Sheaves on Algebraic Stacks". International Mathematics Research Notices. 2016 (3): 717–737. arXiv:1408.6698 . doi:10.1093/imrn/rnv142.
External links
[edit ]- https://mathoverflow.net/questions/69035/the-category-of-l-adic-sheaves
- http://math.stanford.edu/~conrad/Weil2seminar/Notes/L16.pdf Adic Formalism, Part 2 Brian Lawrence March 1, 2017
This algebraic geometry–related article is a stub. You can help Wikipedia by expanding it.