Jump to content
Wikipedia The Free Encyclopedia

Rabin signature algorithm

From Wikipedia, the free encyclopedia
Digital signature scheme

In cryptography, the Rabin signature algorithm is a method of digital signature originally published by Michael O. Rabin in 1979.[1] [2]

The Rabin signature algorithm was one of the first digital signature schemes proposed. By using a trapdoor function with a hash of the message rather than with the message itself, in contrast to earlier proposals of one-time hash-based signatures or trapdoor-based signatures without hashing,[3] [4] Rabin's was the first published design to meet what is now the modern standard of security for digital signatures for more than one message, existential unforgeability under chosen-message attack.[5]

Rabin signatures resemble RSA signatures with exponent e = 2 {\displaystyle e=2} {\displaystyle e=2}, but this leads to qualitative differences that enable more efficient implementation[5] and a security guarantee relative to the difficulty of integer factorization,[1] [2] [6] which has not been proven for RSA. However, Rabin signatures have seen relatively little use or standardization outside IEEE P1363 [7] in comparison to RSA signature schemes such as RSASSA-PKCS1-v1_5 and RSASSA-PSS.

Definition

[edit ]

The Rabin signature scheme is parametrized by a randomized hash function H ( m , u ) {\displaystyle H(m,u)} {\displaystyle H(m,u)} of a message m {\displaystyle m} {\displaystyle m} and k {\displaystyle k} {\displaystyle k}-bit randomization string u {\displaystyle u} {\displaystyle u}.

Public key
A public key is a pair of integers ( n , b ) {\displaystyle (n,b)} {\displaystyle (n,b)} with 0 b < n {\displaystyle 0\leq b<n} {\displaystyle 0\leq b<n} and n {\displaystyle n} {\displaystyle n} odd. b {\displaystyle b} {\displaystyle b} is chosen arbitrarily and may be a fixed constant.
Signature
A signature on a message m {\displaystyle m} {\displaystyle m} is a pair ( u , x ) {\displaystyle (u,x)} {\displaystyle (u,x)} of a k {\displaystyle k} {\displaystyle k}-bit string u {\displaystyle u} {\displaystyle u} and an integer x {\displaystyle x} {\displaystyle x} such that x ( x + b ) H ( m , u ) ( mod n ) . {\displaystyle x(x+b)\equiv H(m,u){\pmod {n}}.} {\displaystyle x(x+b)\equiv H(m,u){\pmod {n}}.}
Private key
The private key for a public key ( n , b ) {\displaystyle (n,b)} {\displaystyle (n,b)} is the secret odd prime factorization p q {\displaystyle p\cdot q} {\displaystyle p\cdot q} of n {\displaystyle n} {\displaystyle n}, chosen uniformly at random from some large space of primes.
Signing a message
To make a signature on a message m {\displaystyle m} {\displaystyle m} using the private key, the signer starts by picking a k {\displaystyle k} {\displaystyle k}-bit string u {\displaystyle u} {\displaystyle u} uniformly at random, and computes c := H ( m , u ) {\displaystyle c:=H(m,u)} {\displaystyle c:=H(m,u)}. Let d = ( b / 2 ) mod n {\displaystyle d=(b/2){\bmod {n}}} {\displaystyle d=(b/2){\bmod {n}}}. If c + d 2 {\displaystyle c+d^{2}} {\displaystyle c+d^{2}} is a quadratic nonresidue modulo n {\displaystyle n} {\displaystyle n}, the signer starts over with an independent random u {\displaystyle u} {\displaystyle u}.[1] : p. 10  Otherwise, the signer computes x p := ( d ± c + d 2 ) mod p , x q := ( d ± c + d 2 ) mod q , {\displaystyle {\begin{aligned}x_{p}&:={\Bigl (}-d\pm {\sqrt {c+d^{2}}}{\Bigr )}{\bmod {p}},\\x_{q}&:={\Bigl (}-d\pm {\sqrt {c+d^{2}}}{\Bigr )}{\bmod {q}},\end{aligned}}} {\displaystyle {\begin{aligned}x_{p}&:={\Bigl (}-d\pm {\sqrt {c+d^{2}}}{\Bigr )}{\bmod {p}},\\x_{q}&:={\Bigl (}-d\pm {\sqrt {c+d^{2}}}{\Bigr )}{\bmod {q}},\end{aligned}}} using a standard algorithm for computing square roots modulo a prime—picking p q 3 ( mod 4 ) {\displaystyle p\equiv q\equiv 3{\pmod {4}}} {\displaystyle p\equiv q\equiv 3{\pmod {4}}} makes it easiest. Square roots are not unique, and different variants of the signature scheme make different choices of square root;[5] in any case, the signer must ensure not to reveal two different roots for the same hash c {\displaystyle c} {\displaystyle c}. x p {\displaystyle x_{p}} {\displaystyle x_{p}} and x q {\displaystyle x_{q}} {\displaystyle x_{q}} satisfy the equations x p ( x p + b ) H ( m , u ) ( mod p ) , x q ( x q + b ) H ( m , u ) ( mod q ) . {\displaystyle {\begin{aligned}x_{p}(x_{p}+b)&\equiv H(m,u){\pmod {p}},\\x_{q}(x_{q}+b)&\equiv H(m,u){\pmod {q}}.\end{aligned}}} {\displaystyle {\begin{aligned}x_{p}(x_{p}+b)&\equiv H(m,u){\pmod {p}},\\x_{q}(x_{q}+b)&\equiv H(m,u){\pmod {q}}.\end{aligned}}} The signer then uses the Chinese remainder theorem to solve the system x x p ( mod p ) , x x q ( mod q ) , {\displaystyle {\begin{aligned}x&\equiv x_{p}{\pmod {p}},\\x&\equiv x_{q}{\pmod {q}},\end{aligned}}} {\displaystyle {\begin{aligned}x&\equiv x_{p}{\pmod {p}},\\x&\equiv x_{q}{\pmod {q}},\end{aligned}}} for x {\displaystyle x} {\displaystyle x}, so that x {\displaystyle x} {\displaystyle x} satisfies x ( x + b ) H ( m , u ) ( mod n ) {\displaystyle x(x+b)\equiv H(m,u){\pmod {n}}} {\displaystyle x(x+b)\equiv H(m,u){\pmod {n}}} as required. The signer reveals ( u , x ) {\displaystyle (u,x)} {\displaystyle (u,x)} as a signature on m {\displaystyle m} {\displaystyle m}.
The number of trials for u {\displaystyle u} {\displaystyle u} before x ( x + b ) H ( m , u ) ( mod n ) {\displaystyle x(x+b)\equiv H(m,u){\pmod {n}}} {\displaystyle x(x+b)\equiv H(m,u){\pmod {n}}} can be solved for x {\displaystyle x} {\displaystyle x} is geometrically distributed with an average around 4 trials, because about 1/4 of all integers are quadratic residues modulo n {\displaystyle n} {\displaystyle n}.

Security

[edit ]

Security against any adversary defined generically in terms of a hash function H {\displaystyle H} {\displaystyle H} (i.e., security in the random oracle model) follows from the difficulty of factoring n {\displaystyle n} {\displaystyle n}: Any such adversary with high probability of success at forgery can, with nearly as high probability, find two distinct square roots x 1 {\displaystyle x_{1}} {\displaystyle x_{1}} and x 2 {\displaystyle x_{2}} {\displaystyle x_{2}} of a random integer c {\displaystyle c} {\displaystyle c} modulo n {\displaystyle n} {\displaystyle n}. If x 1 ± x 2 0 ( mod n ) {\displaystyle x_{1}\pm x_{2}\not \equiv 0{\pmod {n}}} {\displaystyle x_{1}\pm x_{2}\not \equiv 0{\pmod {n}}} then gcd ( x 1 ± x 2 , n ) {\displaystyle \gcd(x_{1}\pm x_{2},n)} {\displaystyle \gcd(x_{1}\pm x_{2},n)} is a nontrivial factor of n {\displaystyle n} {\displaystyle n}, since x 1 2 x 2 2 c ( mod n ) {\displaystyle {x_{1}}^{2}\equiv {x_{2}}^{2}\equiv c{\pmod {n}}} {\displaystyle {x_{1}}^{2}\equiv {x_{2}}^{2}\equiv c{\pmod {n}}} so n x 1 2 x 2 2 = ( x 1 + x 2 ) ( x 1 x 2 ) {\displaystyle n\mid {x_{1}}^{2}-{x_{2}}^{2}=(x_{1}+x_{2})(x_{1}-x_{2})} {\displaystyle n\mid {x_{1}}^{2}-{x_{2}}^{2}=(x_{1}+x_{2})(x_{1}-x_{2})} but n x 1 ± x 2 {\displaystyle n\nmid x_{1}\pm x_{2}} {\displaystyle n\nmid x_{1}\pm x_{2}}.[2] Formalizing the security in modern terms requires filling in some additional details, such as the codomain of H {\displaystyle H} {\displaystyle H}; if we set a standard size K {\displaystyle K} {\displaystyle K} for the prime factors, 2 K 1 < p < q < 2 K {\displaystyle 2^{K-1}<p<q<2^{K}} {\displaystyle 2^{K-1}<p<q<2^{K}}, then we might specify H : { 0 , 1 } × { 0 , 1 } k { 0 , 1 } K {\displaystyle H\colon \{0,1\}^{*}\times \{0,1\}^{k}\to \{0,1\}^{K}} {\displaystyle H\colon \{0,1\}^{*}\times \{0,1\}^{k}\to \{0,1\}^{K}}.[6]

Randomization of the hash function was introduced to allow the signer to find a quadratic residue, but randomized hashing for signatures later became relevant in its own right for tighter security theorems[2] and resilience to collision attacks on fixed hash functions.[8] [9] [10]

Variants

[edit ]

Removing b

[edit ]

The quantity b {\displaystyle b} {\displaystyle b} in the public key adds no security, since any algorithm to solve congruences x ( x + b ) c ( mod n ) {\displaystyle x(x+b)\equiv c{\pmod {n}}} {\displaystyle x(x+b)\equiv c{\pmod {n}}} for x {\displaystyle x} {\displaystyle x} given b {\displaystyle b} {\displaystyle b} and c {\displaystyle c} {\displaystyle c} can be trivially used as a subroutine in an algorithm to compute square roots modulo n {\displaystyle n} {\displaystyle n} and vice versa, so implementations can safely set b = 0 {\displaystyle b=0} {\displaystyle b=0} for simplicity; b {\displaystyle b} {\displaystyle b} was discarded altogether in treatments after the initial proposal.[11] [2] [7] [5] After removing b {\displaystyle b} {\displaystyle b}, the equations for x p {\displaystyle x_{p}} {\displaystyle x_{p}} and x q {\displaystyle x_{q}} {\displaystyle x_{q}} in the signing algorithm become: x p := ± c mod p , x q := ± c mod q . {\displaystyle {\begin{aligned}x_{p}&:=\pm {\sqrt {c}}{\bmod {p}},\\x_{q}&:=\pm {\sqrt {c}}{\bmod {q}}.\end{aligned}}} {\displaystyle {\begin{aligned}x_{p}&:=\pm {\sqrt {c}}{\bmod {p}},\\x_{q}&:=\pm {\sqrt {c}}{\bmod {q}}.\end{aligned}}}

Rabin-Williams

[edit ]

The Rabin signature scheme was later tweaked by Williams in 1980[11] to choose p 3 ( mod 8 ) {\displaystyle p\equiv 3{\pmod {8}}} {\displaystyle p\equiv 3{\pmod {8}}} and q 7 ( mod 8 ) {\displaystyle q\equiv 7{\pmod {8}}} {\displaystyle q\equiv 7{\pmod {8}}}, and replace a square root x {\displaystyle x} {\displaystyle x} by a tweaked square root ( e , f , x ) {\displaystyle (e,f,x)} {\displaystyle (e,f,x)}, with e = ± 1 {\displaystyle e=\pm 1} {\displaystyle e=\pm 1} and f { 1 , 2 } {\displaystyle f\in \{1,2\}} {\displaystyle f\in \{1,2\}}, so that a signature instead satisfies e f x 2 H ( m , u ) ( mod n ) , {\displaystyle efx^{2}\equiv H(m,u){\pmod {n}},} {\displaystyle efx^{2}\equiv H(m,u){\pmod {n}},} which allows the signer to create a signature in a single trial without sacrificing security. This variant is known as Rabin–Williams.[5] [7]

Others

[edit ]

Further variants allow tradeoffs between signature size and verification speed, partial message recovery, signature compression (down to one-half size), and public key compression (down to one-third size), still without sacrificing security.[5]

Variants without the hash function have been published in textbooks,[12] [13] crediting Rabin for exponent 2 but not for the use of a hash function. These variants are trivially broken—for example, the signature x = 2 {\displaystyle x=2} {\displaystyle x=2} can be forged by anyone as a valid signature on the message m = 4 {\displaystyle m=4} {\displaystyle m=4} if the signature verification equation is x 2 m ( mod n ) {\displaystyle x^{2}\equiv m{\pmod {n}}} {\displaystyle x^{2}\equiv m{\pmod {n}}} instead of x 2 H ( m , u ) ( mod n ) {\displaystyle x^{2}\equiv H(m,u){\pmod {n}}} {\displaystyle x^{2}\equiv H(m,u){\pmod {n}}}.

In the original paper,[1] the hash function H ( m , u ) {\displaystyle H(m,u)} {\displaystyle H(m,u)} was written with the notation C ( M U ) {\displaystyle C(MU)} {\displaystyle C(MU)}, with C for compression, and using juxtaposition to denote concatenation of M {\displaystyle M} {\displaystyle M} and U {\displaystyle U} {\displaystyle U} as bit strings:

By convention, when wishing to sign a given message, M {\displaystyle M} {\displaystyle M}, [the signer] P {\displaystyle P} {\displaystyle P} adds as suffix a word U {\displaystyle U} {\displaystyle U} of an agreed upon length k {\displaystyle k} {\displaystyle k}. The choice of U {\displaystyle U} {\displaystyle U} is randomized each time a message is to be signed. The signer now compresses M 1 = M U {\displaystyle M_{1}=MU} {\displaystyle M_{1}=MU} by a hashing function to a word C ( M 1 ) = c {\displaystyle C(M_{1})=c} {\displaystyle C(M_{1})=c}, so that as a binary number c n {\displaystyle c\leq n} {\displaystyle c\leq n}...

This notation has led to some confusion among some authors later who ignored the C {\displaystyle C} {\displaystyle C} part and misunderstood M U {\displaystyle MU} {\displaystyle MU} to mean multiplication, giving the misapprehension of a trivially broken signature scheme.[14]

References

[edit ]
  1. ^ a b c d Rabin, Michael O. (January 1979). Digitalized Signatures and Public Key Functions as Intractable as Factorization (PDF) (Technical report). Cambridge, MA, United States: MIT Laboratory for Computer Science. TR-212.
  2. ^ a b c d e Bellare, Mihir; Rogaway, Phillip (May 1996). Maurer, Ueli (ed.). The Exact Security of Digital Signatures—How to Sign with RSA and Rabin. Advances in Cryptology – EUROCRYPT ’96. Lecture Notes in Computer Science. Vol. 1070. Saragossa, Spain: Springer. pp. 399–416. doi:10.1007/3-540-68339-9_34 . ISBN 978-3-540-61186-8.
  3. ^ Diffie, Whitfield; Hellman, Martin (November 1976). "New Directions in Cryptography" (PDF). IEEE Transactions on Information Theory . 22 (6). IEEE: 644–654. doi:10.1109/TIT.1976.1055638.
  4. ^ Rivest, R.L.; Shamir, A. Shamir; Adleman, L. (February 1978). Graham, S.L; Rivest, R.L.; Manacher, G.K. (eds.). "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems". Communications of the ACM . 21 (2). ACM: 120–126. doi:10.1145/359340.359342 .
  5. ^ a b c d e f Bernstein, Daniel J. (January 31, 2008). RSA signatures and Rabin–Williams signatures: the state of the art (Report). (additional information at https://cr.yp.to/sigs.html)
  6. ^ a b Bernstein, Daniel J. (April 2008). Smart, Nigel (ed.). Proving tight security for Rabin–Williams signatures. Advances in Cryptology – EUROCRYPT 2008. Lecture Notes in Computer Science. Vol. 4965. Istanbul, Turkey: Springer. pp. 70–87. doi:10.1007/978-3-540-78967-3_5 . ISBN 978-3-540-78966-6.
  7. ^ a b c IEEE Standard Specifications for Public-Key Cryptography. IEEE Std 1363-2000. Institute of Electrical and Electronics Engineers. August 25, 2000. doi:10.1109/IEEESTD.2000.92292. ISBN 0-7381-1956-3.
  8. ^ Bellare, Mihir; Rogaway, Phillip (August 1998). Submission to IEEE P1393—PSS: Provably Secure Encoding Method for Digital Signatures (PDF) (Report). Archived from the original (PDF) on 2004年07月13日.
  9. ^ Halevi, Shai; Krawczyk, Hugo (August 2006). Dwork, Cynthia (ed.). Strengthening Digital Signatures via Randomized Hashing (PDF). Advances in Cryptology – CRYPTO 2006. Lecture Notes in Computer Science. Vol. 4117. Santa Barbara, CA, United States: Springer. pp. 41–59. doi:10.1007/11818175_3 . Archived from the original (PDF) on 2022年03月19日.
  10. ^ Dang, Quynh (February 2009). Randomized Hashing for Digital Signatures (Report). NIST Special Publication. Vol. 800–106. United States Department of Commerce, National Institute for Standards and Technology. doi:10.6028/NIST.SP.800-106 .
  11. ^ a b Williams, Hugh C. "A modification of the RSA public-key encryption procedure". IEEE Transactions on Information Theory. 26 (6): 726–729. doi:10.1109/TIT.1980.1056264. ISSN 0018-9448.
  12. ^ Menezes, Alfred J.; van Oorschot, Paul C.; Vanstone, Scott A. (October 1996). "§11.3.4: The Rabin public-key signature scheme" (PDF). Handbook of Applied Cryptography. CRC Press. pp. 438–442. ISBN 0-8493-8523-7.
  13. ^ Galbraith, Steven D. (2012). "§24.2: The textbook Rabin cryptosystem". Mathematics of Public Key Cryptography. Cambridge University Press. pp. 491–494. ISBN 978-1-10701392-6.
  14. ^ Elia, Michele; Schipani, David (2011). On the Rabin signature (PDF). Workshop on Computational Security. Centre de Recerca Matemàtica, Barcelona, Spain.
[edit ]

AltStyle によって変換されたページ (->オリジナル) /