Jump to content
Wikipedia The Free Encyclopedia

Polynomial differential form

From Wikipedia, the free encyclopedia

In algebra, the ring of polynomial differential forms on the standard n-simplex is the differential graded algebra:[1]

Ω poly ( [ n ] ) = Q [ t 0 , . . . , t n , d t 0 , . . . , d t n ] / ( t i 1 , d t i ) . {\displaystyle \Omega _{\text{poly}}^{*}([n])=\mathbb {Q} [t_{0},...,t_{n},dt_{0},...,dt_{n}]/(\sum t_{i}-1,\sum dt_{i}).} {\displaystyle \Omega _{\text{poly}}^{*}([n])=\mathbb {Q} [t_{0},...,t_{n},dt_{0},...,dt_{n}]/(\sum t_{i}-1,\sum dt_{i}).}

Varying n, it determines the simplicial commutative dg algebra:

Ω poly {\displaystyle \Omega _{\text{poly}}^{*}} {\displaystyle \Omega _{\text{poly}}^{*}}

(each u : [ n ] [ m ] {\displaystyle u:[n]\to [m]} {\displaystyle u:[n]\to [m]} induces the map Ω poly ( [ m ] ) Ω poly ( [ n ] ) , t i u ( j ) = i t j {\displaystyle \Omega _{\text{poly}}^{*}([m])\to \Omega _{\text{poly}}^{*}([n]),t_{i}\mapsto \sum _{u(j)=i}t_{j}} {\displaystyle \Omega _{\text{poly}}^{*}([m])\to \Omega _{\text{poly}}^{*}([n]),t_{i}\mapsto \sum _{u(j)=i}t_{j}}).

References

[edit ]
  1. ^ Hinich 1997, § 4.8.1.
[edit ]


Stub icon

This algebra-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /