Jump to content
Wikipedia The Free Encyclopedia

Optimized effective potential method

From Wikipedia, the free encyclopedia
Quantum-mechanical framework for simulating molecules and solids
This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Optimized effective potential method" – news · newspapers · books · scholar · JSTOR
(March 2025) (Learn how and when to remove this message)
An editor has determined that sufficient sources exist to establish the subject's notability. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Optimized effective potential method" – news · newspapers · books · scholar · JSTOR
(March 2025) (Learn how and when to remove this message)
(Learn how and when to remove this message)
Electronic structure methods
Valence bond theory
Coulson–Fischer theory
Generalized valence bond
Modern valence bond theory
Molecular orbital theory
Hartree–Fock method
Semi-empirical quantum chemistry methods
Møller–Plesset perturbation theory
Configuration interaction
Coupled cluster
Multi-configurational self-consistent field
Quantum chemistry composite methods
Quantum Monte Carlo
Density functional theory
Time-dependent density functional theory
Thomas–Fermi model
Orbital-free density functional theory
Adiabatic connection fluctuation dissipation theorem
Görling–Levy perturbation theory
Optimized effective potential method
Linearized augmented-plane-wave method
Projector augmented wave method
Electronic band structure
Nearly free electron model
Tight binding
Muffin-tin approximation
k·p perturbation theory
Empty lattice approximation
GW approximation
Korringa–Kohn–Rostoker method

The optimized effective potential method (OEP)[1] [2] in Kohn-Sham (KS) density functional theory (DFT) [3] [4] is a method to determine the potentials as functional derivatives of the corresponding KS orbital-dependent energy density functionals. This can be in principle done for any arbitrary orbital-dependent functional,[5] but is most common for exchange energy as the so-called exact exchange method (EXX),[6] [7] which will be considered here.

Origin

[edit ]

The OEP method was developed more than 10 years prior to the work of Pierre Hohenberg,[3] Walter Kohn and Lu Jeu Sham [4] in 1953 by R. T. Sharp and G. K. Horton [8] in order to investigate, what happens to Hartree-Fock (HF) theory [9] [10] [11] [12] [13] when, instead of the regular nonlocal exchange potential, a local exchange potential is demanded. Much later after 1990 it was found out that this ansatz is useful in density functional theory.

Background via chain rule

[edit ]

In density functional theory the exchange correlation (xc) potential is defined as the functional derivative of the exchange correlation (xc) energy with respect to the electron density ρ ( r ) {\displaystyle \rho (r)} {\displaystyle \rho (r)}[citation needed ]

v x c ( r ) δ E x c [ ρ ] δ ρ ( r ) = δ E x c [ { ϕ s } ] δ ρ ( r ) {\displaystyle v_{xc}(r)\equiv {\frac {\delta E_{xc}[\rho ]}{\delta \rho (r)}}={\frac {\delta E_{xc}[\{\phi _{s}\}]}{\delta \rho (r)}}} {\displaystyle v_{xc}(r)\equiv {\frac {\delta E_{xc}[\rho ]}{\delta \rho (r)}}={\frac {\delta E_{xc}[\{\phi _{s}\}]}{\delta \rho (r)}}} 1

where the index s {\displaystyle s} {\displaystyle s} denotes either occupied or unoccupied KS orbitals and eigenvalues. The problem is that, although the xc energy is in principle (due to the Hohenberg-Kohn (HK) theorem[3] ) a functional of the density, its explicit dependence on the density is unknown (only known in the simple Local density approximation (LDA) [3] case), only its implicit dependence through the KS orbitals. That motivates the use of the chain rule

v x c ( r ) = d r s [ δ E x c [ { ϕ s } ] δ ϕ s ( r ) δ ϕ s ( r ) δ ρ ( r ) + c . c . ] {\displaystyle v_{xc}(r)=\int dr'\sum _{s}{\bigg [}{\frac {\delta E_{xc}[\{\phi _{s}\}]}{\delta \phi _{s}(r')}}{\frac {\delta \phi _{s}(r')}{\delta \rho (r)}}+c.c.{\bigg ]}} {\displaystyle v_{xc}(r)=\int dr'\sum _{s}{\bigg [}{\frac {\delta E_{xc}[\{\phi _{s}\}]}{\delta \phi _{s}(r')}}{\frac {\delta \phi _{s}(r')}{\delta \rho (r)}}+c.c.{\bigg ]}}

Unfortunately the functional derivative δ ϕ s / δ ρ {\displaystyle \delta \phi _{s}/\delta \rho } {\displaystyle \delta \phi _{s}/\delta \rho }, despite its existence, is also unknown. So one needs to invoke the chain rule once more, now with respect to the Kohn-Sham (KS) potential v S ( r ) {\displaystyle v_{S}(r)} {\displaystyle v_{S}(r)}

v x c ( r ) = d r d r s [ δ E x c [ { ϕ s } ] δ ϕ s ( r ) δ ϕ s ( r ) δ v S ( r ) δ v S ( r ) δ ρ ( r ) X S 1 ( r , r ) + c . c . ] {\displaystyle v_{xc}(r)=\iint dr'dr''\sum _{s}{\bigg [}{\frac {\delta E_{xc}[\{\phi _{s}\}]}{\delta \phi _{s}(r')}}{\frac {\delta \phi _{s}(r')}{\delta v_{S}(r'')}}\underbrace {\frac {\delta v_{S}(r'')}{\delta \rho (r)}} _{\equiv X_{S}^{-1}(r,r')}+c.c.{\bigg ]}} {\displaystyle v_{xc}(r)=\iint dr'dr''\sum _{s}{\bigg [}{\frac {\delta E_{xc}[\{\phi _{s}\}]}{\delta \phi _{s}(r')}}{\frac {\delta \phi _{s}(r')}{\delta v_{S}(r'')}}\underbrace {\frac {\delta v_{S}(r'')}{\delta \rho (r)}} _{\equiv X_{S}^{-1}(r,r')}+c.c.{\bigg ]}}

where X S 1 ( r , r ) {\displaystyle X_{S}^{-1}(r,r')} {\displaystyle X_{S}^{-1}(r,r')} is defined the inverse static Kohn-Sham (KS) response function.[citation needed ]

Formalism

[edit ]

The KS orbital-dependent exact exchange energy (EXX) is given in Chemist's notation as

E x [ { ϕ i } ] = 1 2 i j ( i j | j i ) 1 2 i j d r d r ϕ i ( r ) ϕ j ( r ) ϕ j ( r ) ϕ i ( r ) | r r | {\displaystyle E_{x}[\{\phi _{i}\}]=-{\frac {1}{2}}\sum _{i}\sum _{j}(ij|ji)\equiv -{\frac {1}{2}}\sum _{i}\sum _{j}\iint drdr'{\frac {\phi _{i}^{\dagger }(r)\phi _{j}(r)\phi _{j}^{\dagger }(r')\phi _{i}(r')}{|r-r'|}}} {\displaystyle E_{x}[\{\phi _{i}\}]=-{\frac {1}{2}}\sum _{i}\sum _{j}(ij|ji)\equiv -{\frac {1}{2}}\sum _{i}\sum _{j}\iint drdr'{\frac {\phi _{i}^{\dagger }(r)\phi _{j}(r)\phi _{j}^{\dagger }(r')\phi _{i}(r')}{|r-r'|}}}

where r , r {\displaystyle r,r'} {\displaystyle r,r'} denote electronic coordinates, {\displaystyle \dagger } {\displaystyle \dagger } the hermitian conjugate.The static Kohn-Sham (KS) response function is given as

X S ( r , r ) δ ρ ( r ) δ v S ( r ) = i a [ ϕ i ( r ) ϕ a ( r ) ϕ a ( r ) ϕ i ( r ) ε i ε a + c . c . ] {\displaystyle X_{S}(r,r')\equiv {\frac {\delta \rho (r)}{\delta v_{S}(r')}}=\sum _{i}\sum _{a}{\bigg [}{\frac {\phi _{i}^{\dagger }(r)\phi _{a}(r)\phi _{a}^{\dagger }(r')\phi _{i}(r')}{\varepsilon _{i}-\varepsilon _{a}}}+c.c.{\bigg ]}} {\displaystyle X_{S}(r,r')\equiv {\frac {\delta \rho (r)}{\delta v_{S}(r')}}=\sum _{i}\sum _{a}{\bigg [}{\frac {\phi _{i}^{\dagger }(r)\phi _{a}(r)\phi _{a}^{\dagger }(r')\phi _{i}(r')}{\varepsilon _{i}-\varepsilon _{a}}}+c.c.{\bigg ]}} 2

where the indices i {\displaystyle i} {\displaystyle i} denote occupied and a {\displaystyle a} {\displaystyle a} unoccupied KS orbitals, c . c . {\displaystyle c.c.} {\displaystyle c.c.} the complex conjugate. the right hand side (r.h.s.) of the OEP equation is

t ( r ) = δ E x [ { ϕ i } ] δ v S ( r ) = i a [ ϕ i ( r ) ϕ a ( r ) ϕ a | v ^ x NL | ϕ i ε i ε a + c . c . ] {\displaystyle t(r)={\frac {\delta E_{x}[\{\phi _{i}\}]}{\delta v_{S}(r)}}=\sum _{i}\sum _{a}{\bigg [}{\frac {\phi _{i}^{\dagger }(r)\phi _{a}(r)\langle \phi _{a}|{\hat {v}}_{x}^{\text{NL}}|\phi _{i}\rangle }{\varepsilon _{i}-\varepsilon _{a}}}+c.c.{\bigg ]}} {\displaystyle t(r)={\frac {\delta E_{x}[\{\phi _{i}\}]}{\delta v_{S}(r)}}=\sum _{i}\sum _{a}{\bigg [}{\frac {\phi _{i}^{\dagger }(r)\phi _{a}(r)\langle \phi _{a}|{\hat {v}}_{x}^{\text{NL}}|\phi _{i}\rangle }{\varepsilon _{i}-\varepsilon _{a}}}+c.c.{\bigg ]}} 3

where v ^ x NL {\displaystyle {\hat {v}}_{x}^{\text{NL}}} {\displaystyle {\hat {v}}_{x}^{\text{NL}}} is the nonlocal exchange operator from Hartree-Fock (HF) theory but evaluated with KS orbitals stemming from the functional derivative δ E x c [ { ϕ i } ] / δ ϕ i ( r ) {\displaystyle \delta E_{xc}[\{\phi _{i}\}]/\delta \phi _{i}(r')} {\displaystyle \delta E_{xc}[\{\phi _{i}\}]/\delta \phi _{i}(r')}. Lastly note that the following functional derivative is given by first order static perturbation theory exactly

δ ϕ s ( r ) δ v S ( r ) = ϕ i ( r ) t , t i ϕ t ( r ) ϕ t ( r ) ε i ε t G ( r , r ) {\displaystyle {\frac {\delta \phi _{s}(r')}{\delta v_{S}(r'')}}=\phi _{i}(r')\underbrace {\sum _{t,t\neq i}{\frac {\phi _{t}^{\dagger }(r')\phi _{t}(r)}{\varepsilon _{i}-\varepsilon _{t}}}} _{G(r,r')}} {\displaystyle {\frac {\delta \phi _{s}(r')}{\delta v_{S}(r'')}}=\phi _{i}(r')\underbrace {\sum _{t,t\neq i}{\frac {\phi _{t}^{\dagger }(r')\phi _{t}(r)}{\varepsilon _{i}-\varepsilon _{t}}}} _{G(r,r')}}

which is a Green's function. Combining eqs. (1), (2) and (3) leads to the Optimized Effective Potential (OEP) Integral equation

d r v x ( r ) X S ( r , r ) = t ( r ) {\displaystyle \int dr'v_{x}(r')X_{S}(r,r')=t(r)} {\displaystyle \int dr'v_{x}(r')X_{S}(r,r')=t(r)}

Implementation with a basis set

[edit ]

Usually the exchange potential is expanded in an auxiliary basis set (RI basis) { f μ } {\displaystyle \{f_{\mu }\}} {\displaystyle \{f_{\mu }\}} as v x ( r ) = ν v x , ν f ν ( r ) {\displaystyle v_{x}(r)=\sum _{\nu }v_{x,\nu }f_{\nu }(r)} {\displaystyle v_{x}(r)=\sum _{\nu }v_{x,\nu }f_{\nu }(r)} together with the regular orbital basis { χ λ } {\displaystyle \{\chi _{\lambda }\}} {\displaystyle \{\chi _{\lambda }\}} requiring the so-called 3-index integrals of the form ( f ν | χ λ χ κ ) {\displaystyle (f_{\nu }|\chi _{\lambda }\chi _{\kappa })} {\displaystyle (f_{\nu }|\chi _{\lambda }\chi _{\kappa })} as the linear algebra problem

X S v x = t {\displaystyle {\textbf {X}}_{\text{S}}{\textbf {v}}_{\text{x}}={\textbf {t}}} {\displaystyle {\textbf {X}}_{\text{S}}{\textbf {v}}_{\text{x}}={\textbf {t}}}

It shall be noted, that many OEP codes suffer from numerical issues.[14] There are two main causes. The first is, that the Hohenberg-Kohn theorem is violated since for practical reasons a finite basis set is used, the second being that different spatial regions of potentials have different influence on the optimized energy leading e.g. to oscillations in the convergence from poor conditioning.

References

[edit ]
  1. ^ Kümmel, S.; Perdew, J. P. (2003). "Optimized effective potential made simple: Orbital functionals, orbital shifts, and the exact Kohn-Sham exchange potential". Physical Review B. 68 (3) 035103. arXiv:cond-mat/0303396 . Bibcode:2003PhRvB..68c5103K. doi:10.1103/PhysRevB.68.035103.
  2. ^ Krieger, J. B.; Li, Y.; Iafrate, G. J. (1992). "Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer discontinuity: Exchange-only theory". Physical Review A. 45 (1): 101–126. Bibcode:1992PhRvA..45..101K. doi:10.1103/PhysRevA.45.101. PMID 9906704.
  3. ^ a b c d Hohenberg, P.; Kohn, W. (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864 .
  4. ^ a b Kohn, W.; Sham, L. J. (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A) A1133. Bibcode:1965PhRv..140.1133K. doi:10.1103/PhysRev.140.A1133 .
  5. ^ Smiga, S.; Siecinska, S.; Fabiana, E. (2020). "Methods to generate reference total Pauli and kinetic potentials". Physical Review B. 101 165144. arXiv:2005.03526 . doi:10.1103/PhysRevB.101.165144.
  6. ^ Görling, A.; Levy, M. (1994). "Exact Kohn-Sham scheme based on perturbation theory". Physical Review A. 50 (1): 196–204. Bibcode:1994PhRvA..50..196G. doi:10.1103/PhysRevA.50.196. PMID 9910882.
  7. ^ Görling A. (1995). "Exact treatment of exchange in Kohn-Sham band-structure schemes". Physical Review B. 53 (11): 7024–7029. doi:10.1103/PhysRevB.53.7024. PMID 9982147.
  8. ^ Sharp, R. T.; Horton, G. K. (1953). "A Variational Approach to the Unipotential Many-Electron Problem". Physical Review. 90 (2): 317. Bibcode:1953PhRv...90..317S. doi:10.1103/PhysRev.90.317.
  9. ^ Hartree, D. R. (1928). "The Wave Mechanics of an Atom with a Non-Coulomb Central Field". Mathematical Proceedings of the Cambridge Philosophical Society . 24 (1): 111. Bibcode:1928PCPS...24..111H. doi:10.1017/S0305004100011920. S2CID 121520012.
  10. ^ Slater, J. C. (1928). "The Self Consistent Field and the Structure of Atoms". Physical Review . 32 (3): 339–348. Bibcode:1928PhRv...32..339S. doi:10.1103/PhysRev.32.339.
  11. ^ Gaunt, J. A. (1928). "A Theory of Hartree's Atomic Fields". Mathematical Proceedings of the Cambridge Philosophical Society . 24 (2): 328–342. Bibcode:1928PCPS...24..328G. doi:10.1017/S0305004100015851. S2CID 119685329.
  12. ^ Slater, J. C. (1930). "Note on Hartree's Method". Physical Review . 35 (2): 210–211. Bibcode:1930PhRv...35..210S. doi:10.1103/PhysRev.35.210.2.
  13. ^ Fock, V. A. (1930). "Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems". Zeitschrift für Physik (in German). 61 (1): 126–148. Bibcode:1930ZPhy...61..126F. doi:10.1007/BF01340294. S2CID 125419115. Fock, V. A. (1930). ""Selfconsistent field" mit Austausch für Natrium". Zeitschrift für Physik (in German). 62 (11): 795–805. Bibcode:1930ZPhy...62..795F. doi:10.1007/BF01330439. S2CID 120921212.
  14. ^ Trushin, E. and Görling, A. (2021). "Numerically stable optimized effective potential method with standard Gaussian basis sets". The Journal of Chemical Physics. 155: 054109. doi:10.1063/5.0056431.{{cite journal}}: CS1 maint: multiple names: authors list (link)

AltStyle によって変換されたページ (->オリジナル) /