Jump to content
Wikipedia The Free Encyclopedia

Normal closure (group theory)

From Wikipedia, the free encyclopedia
Smallest normal group containing a set
This article is about the normal closure of a subset of a group. For the normal closure of a field extension, see Normal closure (field theory).
Algebraic structureGroup theory
Group theory
Modular groups
  • PSL(2, Z {\displaystyle \mathbb {Z} } {\displaystyle \mathbb {Z} })
  • SL(2, Z {\displaystyle \mathbb {Z} } {\displaystyle \mathbb {Z} })

In group theory, the normal closure of a subset S {\displaystyle S} {\displaystyle S} of a group G {\displaystyle G} {\displaystyle G} is the smallest normal subgroup of G {\displaystyle G} {\displaystyle G} containing S . {\displaystyle S.} {\displaystyle S.}

Properties and description

[edit ]

Formally, if G {\displaystyle G} {\displaystyle G} is a group and S {\displaystyle S} {\displaystyle S} is a subset of G , {\displaystyle G,} {\displaystyle G,} the normal closure ncl G ( S ) {\displaystyle \operatorname {ncl} _{G}(S)} {\displaystyle \operatorname {ncl} _{G}(S)} of S {\displaystyle S} {\displaystyle S} is the intersection of all normal subgroups of G {\displaystyle G} {\displaystyle G} containing S {\displaystyle S} {\displaystyle S}:[1] ncl G ( S ) = S N G N . {\displaystyle \operatorname {ncl} _{G}(S)=\bigcap _{S\subseteq N\triangleleft G}N.} {\displaystyle \operatorname {ncl} _{G}(S)=\bigcap _{S\subseteq N\triangleleft G}N.}

The normal closure ncl G ( S ) {\displaystyle \operatorname {ncl} _{G}(S)} {\displaystyle \operatorname {ncl} _{G}(S)} is the smallest normal subgroup of G {\displaystyle G} {\displaystyle G} containing S , {\displaystyle S,} {\displaystyle S,}[1] in the sense that ncl G ( S ) {\displaystyle \operatorname {ncl} _{G}(S)} {\displaystyle \operatorname {ncl} _{G}(S)} is a subset of every normal subgroup of G {\displaystyle G} {\displaystyle G} that contains S . {\displaystyle S.} {\displaystyle S.}

The subgroup ncl G ( S ) {\displaystyle \operatorname {ncl} _{G}(S)} {\displaystyle \operatorname {ncl} _{G}(S)} is the subgroup generated by the set S G = { s g : s S , g G } = { g 1 s g : s S , g G } {\displaystyle S^{G}=\{s^{g}:s\in S,g\in G\}=\{g^{-1}sg:s\in S,g\in G\}} {\displaystyle S^{G}=\{s^{g}:s\in S,g\in G\}=\{g^{-1}sg:s\in S,g\in G\}} of all conjugates of elements of S {\displaystyle S} {\displaystyle S} in G . {\displaystyle G.} {\displaystyle G.} Therefore one can also write the subgroup as the set of all products of conjugates of elements of S {\displaystyle S} {\displaystyle S} or their inverses: ncl G ( S ) = { g 1 1 s 1 ϵ 1 g 1 g n 1 s n ϵ n g n : n 0 , ϵ i = ± 1 , s i S , g i G } . {\displaystyle \operatorname {ncl} _{G}(S)=\{g_{1}^{-1}s_{1}^{\epsilon _{1}}g_{1}\cdots g_{n}^{-1}s_{n}^{\epsilon _{n}}g_{n}:n\geq 0,\epsilon _{i}=\pm 1,s_{i}\in S,g_{i}\in G\}.} {\displaystyle \operatorname {ncl} _{G}(S)=\{g_{1}^{-1}s_{1}^{\epsilon _{1}}g_{1}\cdots g_{n}^{-1}s_{n}^{\epsilon _{n}}g_{n}:n\geq 0,\epsilon _{i}=\pm 1,s_{i}\in S,g_{i}\in G\}.}

Any normal subgroup is equal to its normal closure. The normal closure of the empty set {\displaystyle \varnothing } {\displaystyle \varnothing } is the trivial subgroup.[2]

A variety of other notations are used for the normal closure in the literature, including S G , {\displaystyle \langle S^{G}\rangle ,} {\displaystyle \langle S^{G}\rangle ,} S G , {\displaystyle \langle S\rangle ^{G},} {\displaystyle \langle S\rangle ^{G},} S G , {\displaystyle \langle \langle S\rangle \rangle _{G},} {\displaystyle \langle \langle S\rangle \rangle _{G},} and S G . {\displaystyle \langle \langle S\rangle \rangle ^{G}.} {\displaystyle \langle \langle S\rangle \rangle ^{G}.}

Dual to the concept of normal closure is that of normal interior or normal core , defined as the join of all normal subgroups contained in S . {\displaystyle S.} {\displaystyle S.}[3]

Group presentations

[edit ]

For a group G {\displaystyle G} {\displaystyle G} given by a presentation G = S R {\displaystyle G=\langle S\mid R\rangle } {\displaystyle G=\langle S\mid R\rangle } with generators S {\displaystyle S} {\displaystyle S} and defining relators R , {\displaystyle R,} {\displaystyle R,} the presentation notation means that G {\displaystyle G} {\displaystyle G} is the quotient group G = F ( S ) / ncl F ( S ) ( R ) , {\displaystyle G=F(S)/\operatorname {ncl} _{F(S)}(R),} {\displaystyle G=F(S)/\operatorname {ncl} _{F(S)}(R),} where F ( S ) {\displaystyle F(S)} {\displaystyle F(S)} is a free group on S . {\displaystyle S.} {\displaystyle S.}[4]

References

[edit ]
  1. ^ a b Derek F. Holt; Bettina Eick; Eamonn A. O'Brien (2005). Handbook of Computational Group Theory. CRC Press. p. 14. ISBN 1-58488-372-3.
  2. ^ Rotman, Joseph J. (1995). An introduction to the theory of groups. Graduate Texts in Mathematics. Vol. 148 (Fourth ed.). New York: Springer-Verlag. p. 32. doi:10.1007/978-1-4612-4176-8. ISBN 0-387-94285-8. MR 1307623.
  3. ^ Robinson, Derek J. S. (1996). A Course in the Theory of Groups. Graduate Texts in Mathematics. Vol. 80 (2nd ed.). Springer-Verlag. p. 16. ISBN 0-387-94461-3. Zbl 0836.20001.
  4. ^ Lyndon, Roger C.; Schupp, Paul E. (2001). Combinatorial group theory. Classics in Mathematics. Springer-Verlag, Berlin. p. 87. ISBN 3-540-41158-5. MR 1812024.


Stub icon

This group theory-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /