Normal closure (group theory)
| Algebraic structure → Group theory Group theory |
|---|
|
Basic notions |
Modular groups
|
Infinite dimensional Lie group
|
In group theory, the normal closure of a subset {\displaystyle S} of a group {\displaystyle G} is the smallest normal subgroup of {\displaystyle G} containing {\displaystyle S.}
Properties and description
[edit ]Formally, if {\displaystyle G} is a group and {\displaystyle S} is a subset of {\displaystyle G,} the normal closure {\displaystyle \operatorname {ncl} _{G}(S)} of {\displaystyle S} is the intersection of all normal subgroups of {\displaystyle G} containing {\displaystyle S}:[1] {\displaystyle \operatorname {ncl} _{G}(S)=\bigcap _{S\subseteq N\triangleleft G}N.}
The normal closure {\displaystyle \operatorname {ncl} _{G}(S)} is the smallest normal subgroup of {\displaystyle G} containing {\displaystyle S,}[1] in the sense that {\displaystyle \operatorname {ncl} _{G}(S)} is a subset of every normal subgroup of {\displaystyle G} that contains {\displaystyle S.}
The subgroup {\displaystyle \operatorname {ncl} _{G}(S)} is the subgroup generated by the set {\displaystyle S^{G}=\{s^{g}:s\in S,g\in G\}=\{g^{-1}sg:s\in S,g\in G\}} of all conjugates of elements of {\displaystyle S} in {\displaystyle G.} Therefore one can also write the subgroup as the set of all products of conjugates of elements of {\displaystyle S} or their inverses: {\displaystyle \operatorname {ncl} _{G}(S)=\{g_{1}^{-1}s_{1}^{\epsilon _{1}}g_{1}\cdots g_{n}^{-1}s_{n}^{\epsilon _{n}}g_{n}:n\geq 0,\epsilon _{i}=\pm 1,s_{i}\in S,g_{i}\in G\}.}
Any normal subgroup is equal to its normal closure. The normal closure of the empty set {\displaystyle \varnothing } is the trivial subgroup.[2]
A variety of other notations are used for the normal closure in the literature, including {\displaystyle \langle S^{G}\rangle ,} {\displaystyle \langle S\rangle ^{G},} {\displaystyle \langle \langle S\rangle \rangle _{G},} and {\displaystyle \langle \langle S\rangle \rangle ^{G}.}
Dual to the concept of normal closure is that of normal interior or normal core , defined as the join of all normal subgroups contained in {\displaystyle S.}[3]
Group presentations
[edit ]For a group {\displaystyle G} given by a presentation {\displaystyle G=\langle S\mid R\rangle } with generators {\displaystyle S} and defining relators {\displaystyle R,} the presentation notation means that {\displaystyle G} is the quotient group {\displaystyle G=F(S)/\operatorname {ncl} _{F(S)}(R),} where {\displaystyle F(S)} is a free group on {\displaystyle S.}[4]
References
[edit ]- ^ a b Derek F. Holt; Bettina Eick; Eamonn A. O'Brien (2005). Handbook of Computational Group Theory. CRC Press. p. 14. ISBN 1-58488-372-3.
- ^ Rotman, Joseph J. (1995). An introduction to the theory of groups. Graduate Texts in Mathematics. Vol. 148 (Fourth ed.). New York: Springer-Verlag. p. 32. doi:10.1007/978-1-4612-4176-8. ISBN 0-387-94285-8. MR 1307623.
- ^ Robinson, Derek J. S. (1996). A Course in the Theory of Groups. Graduate Texts in Mathematics. Vol. 80 (2nd ed.). Springer-Verlag. p. 16. ISBN 0-387-94461-3. Zbl 0836.20001.
- ^ Lyndon, Roger C.; Schupp, Paul E. (2001). Combinatorial group theory. Classics in Mathematics. Springer-Verlag, Berlin. p. 87. ISBN 3-540-41158-5. MR 1812024.
This group theory-related article is a stub. You can help Wikipedia by expanding it.