Nilpotent matrix
In linear algebra, a nilpotent matrix is a square matrix N such that
- {\displaystyle N^{k}=0,円}
for some positive integer {\displaystyle k}. The smallest such {\displaystyle k} is called the index of {\displaystyle N},[1] sometimes the degree of {\displaystyle N}.
More generally, a nilpotent transformation is a linear transformation {\displaystyle L} of a vector space such that {\displaystyle L^{k}=0} for some positive integer {\displaystyle k} (and thus, {\displaystyle L^{j}=0} for all {\displaystyle j\geq k}).[2] [3] [4] Both of these concepts are special cases of a more general concept of nilpotence that applies to elements of rings.
Examples
[edit ]Example 1
[edit ]The matrix
- {\displaystyle A={\begin{bmatrix}0&1\0円&0\end{bmatrix}}}
is nilpotent with index 2, since {\displaystyle A^{2}=0}.
Example 2
[edit ]More generally, any {\displaystyle n}-dimensional triangular matrix with zeros along the main diagonal is nilpotent, with index {\displaystyle \leq n} [citation needed ]. For example, the matrix
- {\displaystyle B={\begin{bmatrix}0&2&1&6\0円&0&1&2\0円&0&0&3\0円&0&0&0\end{bmatrix}}}
is nilpotent, with
- {\displaystyle B^{2}={\begin{bmatrix}0&0&2&7\0円&0&0&3\0円&0&0&0\0円&0&0&0\end{bmatrix}};\ B^{3}={\begin{bmatrix}0&0&0&6\0円&0&0&0\0円&0&0&0\0円&0&0&0\end{bmatrix}};\ B^{4}={\begin{bmatrix}0&0&0&0\0円&0&0&0\0円&0&0&0\0円&0&0&0\end{bmatrix}}}
The index of {\displaystyle B} is therefore 4.
Example 3
[edit ]Although the examples above have a large number of zero entries, a typical nilpotent matrix does not. For example,
- {\displaystyle C={\begin{bmatrix}5&-3&2\15円&-9&6\10円&-6&4\end{bmatrix}}\qquad C^{2}={\begin{bmatrix}0&0&0\0円&0&0\0円&0&0\end{bmatrix}}}
although the matrix has no zero entries.
Example 4
[edit ]Additionally, any matrices of the form
- {\displaystyle {\begin{bmatrix}a_{1}&a_{1}&\cdots &a_{1}\\a_{2}&a_{2}&\cdots &a_{2}\\\vdots &\vdots &\ddots &\vdots \\-a_{1}-a_{2}-\ldots -a_{n-1}&-a_{1}-a_{2}-\ldots -a_{n-1}&\ldots &-a_{1}-a_{2}-\ldots -a_{n-1}\end{bmatrix}}}
such as
- {\displaystyle {\begin{bmatrix}5&5&5\6円&6&6\\-11&-11&-11\end{bmatrix}}}
or
- {\displaystyle {\begin{bmatrix}1&1&1&1\2円&2&2&2\4円&4&4&4\\-7&-7&-7&-7\end{bmatrix}}}
square to zero.
Example 5
[edit ]Perhaps some of the most striking examples of nilpotent matrices are {\displaystyle n\times n} square matrices of the form:
- {\displaystyle {\begin{bmatrix}2&2&2&\cdots &1-n\\n+2&1&1&\cdots &-n\1円&n+2&1&\cdots &-n\1円&1&n+2&\cdots &-n\\\vdots &\vdots &\vdots &\ddots &\vdots \end{bmatrix}}}
The first few of which are:
- {\displaystyle {\begin{bmatrix}2&-1\4円&-2\end{bmatrix}}\qquad {\begin{bmatrix}2&2&-2\5円&1&-3\1円&5&-3\end{bmatrix}}\qquad {\begin{bmatrix}2&2&2&-3\6円&1&1&-4\1円&6&1&-4\1円&1&6&-4\end{bmatrix}}\qquad {\begin{bmatrix}2&2&2&2&-4\7円&1&1&1&-5\1円&7&1&1&-5\1円&1&7&1&-5\1円&1&1&7&-5\end{bmatrix}}\qquad \ldots }
These matrices are nilpotent but there are no zero entries in any powers of them less than the index.[5]
Example 6
[edit ]Consider the linear space of polynomials of a bounded degree. The derivative operator is a linear map. We know that applying the derivative to a polynomial decreases its degree by one, so when applying it iteratively, we will eventually obtain zero. Therefore, on such a space, the derivative is representable by a nilpotent matrix.
Characterization
[edit ]For an {\displaystyle n\times n} square matrix {\displaystyle N} with real (or complex) entries, the following are equivalent:
- {\displaystyle N} is nilpotent.
- The characteristic polynomial for {\displaystyle N} is {\displaystyle \det \left(xI-N\right)=x^{n}}.
- The minimal polynomial for {\displaystyle N} is {\displaystyle x^{k}} for some positive integer {\displaystyle k\leq n}.
- The only complex eigenvalue for {\displaystyle N} is 0.
The last theorem holds true for matrices over any field of characteristic 0 or sufficiently large characteristic. (cf. Newton's identities)
This theorem has several consequences, including:
- The index of an {\displaystyle n\times n} nilpotent matrix is always less than or equal to {\displaystyle n}. For example, every {\displaystyle 2\times 2} nilpotent matrix squares to zero.
- The determinant and trace of a nilpotent matrix are always zero. Consequently, a nilpotent matrix cannot be invertible.
- The only nilpotent diagonalizable matrix is the zero matrix.
See also: Jordan–Chevalley decomposition#Nilpotency criterion.
Classification
[edit ]Consider the {\displaystyle n\times n} (upper) shift matrix:
- {\displaystyle S={\begin{bmatrix}0&1&0&\ldots &0\0円&0&1&\ldots &0\\\vdots &\vdots &\vdots &\ddots &\vdots \0円&0&0&\ldots &1\0円&0&0&\ldots &0\end{bmatrix}}.}
This matrix has 1s along the superdiagonal and 0s everywhere else. As a linear transformation, the shift matrix "shifts" the components of a vector one position to the left, with a zero appearing in the last position:
- {\displaystyle S(x_{1},x_{2},\ldots ,x_{n})=(x_{2},\ldots ,x_{n},0).}[6]
This matrix is nilpotent with degree {\displaystyle n}, and is the canonical nilpotent matrix.
Specifically, if {\displaystyle N} is any nilpotent matrix, then {\displaystyle N} is similar to a block diagonal matrix of the form
- {\displaystyle {\begin{bmatrix}S_{1}&0&\ldots &0\0円&S_{2}&\ldots &0\\\vdots &\vdots &\ddots &\vdots \0円&0&\ldots &S_{r}\end{bmatrix}}}
where each of the blocks {\displaystyle S_{1},S_{2},\ldots ,S_{r}} is a shift matrix (possibly of different sizes). This form is a special case of the Jordan canonical form for matrices.[7]
For example, any nonzero 2 × 2 nilpotent matrix is similar to the matrix
- {\displaystyle {\begin{bmatrix}0&1\0円&0\end{bmatrix}}.}
That is, if {\displaystyle N} is any nonzero 2 × 2 nilpotent matrix, then there exists a basis b1, b2 such that Nb1 = 0 and Nb2 = b1.
This classification theorem holds for matrices over any field. (It is not necessary for the field to be algebraically closed.)
Flag of subspaces
[edit ]A nilpotent transformation {\displaystyle L} on {\displaystyle \mathbb {R} ^{n}} naturally determines a flag of subspaces
- {\displaystyle \{0\}\subset \ker L\subset \ker L^{2}\subset \ldots \subset \ker L^{q-1}\subset \ker L^{q}=\mathbb {R} ^{n}}
and a signature
- {\displaystyle 0=n_{0}<n_{1}<n_{2}<\ldots <n_{q-1}<n_{q}=n,\qquad n_{i}=\dim \ker L^{i}.}
The signature characterizes {\displaystyle L} up to an invertible linear transformation. Furthermore, it satisfies the inequalities
- {\displaystyle n_{j+1}-n_{j}\leq n_{j}-n_{j-1},\qquad {\mbox{for all }}j=1,\ldots ,q-1.}
Conversely, any sequence of natural numbers satisfying these inequalities is the signature of a nilpotent transformation.
Additional properties
[edit ]- If {\displaystyle N} is nilpotent of index {\displaystyle k} , then {\displaystyle I+N} and {\displaystyle I-N} are invertible, where {\displaystyle I} is the {\displaystyle n\times n} identity matrix. The inverses are given by
- {\displaystyle {\begin{aligned}(I+N)^{-1}&=\displaystyle \sum _{m=0}^{k}\left(-N\right)^{m}=I-N+N^{2}-N^{3}+N^{4}-N^{5}+N^{6}-N^{7}+\cdots +(-N)^{k}\\(I-N)^{-1}&=\displaystyle \sum _{m=0}^{k}N^{m}=I+N+N^{2}+N^{3}+N^{4}+N^{5}+N^{6}+N^{7}+\cdots +N^{k}\\\end{aligned}}}
- If {\displaystyle N} is nilpotent, then
- {\displaystyle \det(I+N)=1.}
Conversely, if {\displaystyle A} is a matrix and
- {\displaystyle \det(I+tA)=1\!,円}
- Every singular matrix can be written as a product of nilpotent matrices.[8]
- A nilpotent matrix is a special case of a convergent matrix.
Generalizations
[edit ]A linear operator {\displaystyle T} is locally nilpotent if for every vector {\displaystyle v}, there exists a {\displaystyle k\in \mathbb {N} } such that
- {\displaystyle T^{k}(v)=0.\!,円}
For operators on a finite-dimensional vector space, local nilpotence is equivalent to nilpotence.
Notes
[edit ]- ^ Herstein (1975, p. 294)
- ^ Beauregard & Fraleigh (1973, p. 312)
- ^ Herstein (1975, p. 268)
- ^ Nering (1970, p. 274)
- ^ Mercer, Idris D. (31 October 2005). "Finding "nonobvious" nilpotent matrices" (PDF). idmercer.com. self-published; personal credentials: PhD Mathematics, Simon Fraser University . Retrieved 5 April 2023.
- ^ Beauregard & Fraleigh (1973, p. 312)
- ^ Beauregard & Fraleigh (1973, pp. 312, 313)
- ^ R. Sullivan, Products of nilpotent matrices, Linear and Multilinear Algebra, Vol. 56, No. 3
References
[edit ]- Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields , Boston: Houghton Mifflin Co., ISBN 0-395-14017-X
- Herstein, I. N. (1975), Topics In Algebra (2nd ed.), John Wiley & Sons
- Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley, LCCN 76091646