Jump to content
Wikipedia The Free Encyclopedia

Lucas number

From Wikipedia, the free encyclopedia
Infinite integer series where the next number is the sum of the two preceding it
Not to be confused with Lucas sequences, the general class of sequences to which the Lucas numbers belong.
This article includes a list of general references, but it lacks sufficient corresponding inline citations . Please help to improve this article by introducing more precise citations. (December 2019) (Learn how and when to remove this message)
The Lucas spiral, made with quarter-arcs, is a good approximation of the golden spiral when its terms are large. However, when its terms become very small, the arc's radius decreases rapidly from 3 to 1 then increases from 1 to 2.

The Lucas sequence is an integer sequence named after the mathematician François Édouard Anatole Lucas (1842–1891), who studied both that sequence and the closely related Fibonacci sequence. Individual numbers in the Lucas sequence are known as Lucas numbers. Lucas numbers and Fibonacci numbers form complementary instances of Lucas sequences.

The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values.[1] This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ratio.[2] The sequence also has a variety of relationships with the Fibonacci numbers, like the fact that adding any two Fibonacci numbers two terms apart in the Fibonacci sequence results in the Lucas number in between.[3]

The first few Lucas numbers are

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, ... . (sequence A000032 in the OEIS)

which coincides for example with the number of independent vertex sets for cyclic graphs C n {\displaystyle C_{n}} {\displaystyle C_{n}} of length n 2 {\displaystyle n\geq 2} {\displaystyle n\geq 2}.[1]

Definition

[edit ]

As with the Fibonacci numbers, each Lucas number is defined to be the sum of its two immediately previous terms, thereby forming a Fibonacci integer sequence. The first two Lucas numbers are L 0 = 2 {\displaystyle L_{0}=2} {\displaystyle L_{0}=2} and L 1 = 1 {\displaystyle L_{1}=1} {\displaystyle L_{1}=1}, which differs from the first two Fibonacci numbers F 0 = 0 {\displaystyle F_{0}=0} {\displaystyle F_{0}=0} and F 1 = 1 {\displaystyle F_{1}=1} {\displaystyle F_{1}=1}. Though closely related in definition, Lucas and Fibonacci numbers exhibit distinct properties.

The Lucas numbers may thus be defined as follows:

L n := { 2 if  n = 0 ; 1 if  n = 1 ; L n 1 + L n 2 if  n > 1. {\displaystyle L_{n}:={\begin{cases}2&{\text{if }}n=0;\1円&{\text{if }}n=1;\\L_{n-1}+L_{n-2}&{\text{if }}n>1.\end{cases}}} {\displaystyle L_{n}:={\begin{cases}2&{\text{if }}n=0;\1円&{\text{if }}n=1;\\L_{n-1}+L_{n-2}&{\text{if }}n>1.\end{cases}}}

(where n belongs to the natural numbers)

All Fibonacci-like integer sequences appear in shifted form as a row of the Wythoff array; the Fibonacci sequence itself is the first row and the Lucas sequence is the second row. Also like all Fibonacci-like integer sequences, the ratio between two consecutive Lucas numbers converges to the golden ratio.

Extension to negative integers

[edit ]

Using L n 2 = L n L n 1 {\displaystyle L_{n-2}=L_{n}-L_{n-1}} {\displaystyle L_{n-2}=L_{n}-L_{n-1}}, one can extend the Lucas numbers to negative integers to obtain a doubly infinite sequence:

..., −11, 7, −4, 3, −1, 2, 1, 3, 4, 7, 11, ... (terms L n {\displaystyle L_{n}} {\displaystyle L_{n}} for 5 n 5 {\displaystyle -5\leq {}n\leq 5} {\displaystyle -5\leq {}n\leq 5} are shown).

The formula for terms with negative indices in this sequence is

L n = ( 1 ) n L n . {\displaystyle L_{-n}=(-1)^{n}L_{n}.\!} {\displaystyle L_{-n}=(-1)^{n}L_{n}.\!}

Relationship to Fibonacci numbers

[edit ]
The first identity expressed visually

The Lucas numbers are related to the Fibonacci numbers by many identities. Among these are the following:

  • L n = F n 1 + F n + 1 = 2 F n + 1 F n {\displaystyle L_{n}=F_{n-1}+F_{n+1}=2F_{n+1}-F_{n}} {\displaystyle L_{n}=F_{n-1}+F_{n+1}=2F_{n+1}-F_{n}}
  • L m + n = L m + 1 F n + L m F n 1 {\displaystyle L_{m+n}=L_{m+1}F_{n}+L_{m}F_{n-1}} {\displaystyle L_{m+n}=L_{m+1}F_{n}+L_{m}F_{n-1}}
  • F 2 n = L n F n {\displaystyle F_{2n}=L_{n}F_{n}} {\displaystyle F_{2n}=L_{n}F_{n}}
  • F n + k + ( 1 ) k F n k = L k F n {\displaystyle F_{n+k}+(-1)^{k}F_{n-k}=L_{k}F_{n}} {\displaystyle F_{n+k}+(-1)^{k}F_{n-k}=L_{k}F_{n}}
  • 2 F 2 n + k = L n F n + k + L n + k F n {\displaystyle 2F_{2n+k}=L_{n}F_{n+k}+L_{n+k}F_{n}} {\displaystyle 2F_{2n+k}=L_{n}F_{n+k}+L_{n+k}F_{n}}
  • L 2 n = 5 F n 2 + 2 ( 1 ) n = L n 2 2 ( 1 ) n {\displaystyle L_{2n}=5F_{n}^{2}+2(-1)^{n}=L_{n}^{2}-2(-1)^{n}} {\displaystyle L_{2n}=5F_{n}^{2}+2(-1)^{n}=L_{n}^{2}-2(-1)^{n}}, so lim n L n F n = 5 {\displaystyle \lim _{n\to \infty }{\frac {L_{n}}{F_{n}}}={\sqrt {5}}} {\displaystyle \lim _{n\to \infty }{\frac {L_{n}}{F_{n}}}={\sqrt {5}}}.
  • | L n 5 F n | = 2 φ n 0 {\displaystyle \vert L_{n}-{\sqrt {5}}F_{n}\vert ={\frac {2}{\varphi ^{n}}}\to 0} {\displaystyle \vert L_{n}-{\sqrt {5}}F_{n}\vert ={\frac {2}{\varphi ^{n}}}\to 0}
  • L n + k ( 1 ) k L n k = 5 F n F k {\displaystyle L_{n+k}-(-1)^{k}L_{n-k}=5F_{n}F_{k}} {\displaystyle L_{n+k}-(-1)^{k}L_{n-k}=5F_{n}F_{k}}; in particular, F n = L n 1 + L n + 1 5 {\displaystyle F_{n}={L_{n-1}+L_{n+1} \over 5}} {\displaystyle F_{n}={L_{n-1}+L_{n+1} \over 5}}, so 5 F n + L n = 2 L n + 1 {\displaystyle 5F_{n}+L_{n}=2L_{n+1}} {\displaystyle 5F_{n}+L_{n}=2L_{n+1}}.

Their closed formula is given as:

L n = φ n + ( 1 φ ) n = φ n + ( φ 1 ) n = ( 1 + 5 2 ) n + ( 1 5 2 ) n , {\displaystyle L_{n}=\varphi ^{n}+(1-\varphi )^{n}=\varphi ^{n}+{\bigl (}{-\varphi ^{-1}}{\bigr )}^{n}=\left({1+{\sqrt {5}} \over 2}\right)^{n}+\left({1-{\sqrt {5}} \over 2}\right)^{n},} {\displaystyle L_{n}=\varphi ^{n}+(1-\varphi )^{n}=\varphi ^{n}+{\bigl (}{-\varphi ^{-1}}{\bigr )}^{n}=\left({1+{\sqrt {5}} \over 2}\right)^{n}+\left({1-{\sqrt {5}} \over 2}\right)^{n},}

where φ {\displaystyle \varphi } {\displaystyle \varphi } is the golden ratio. Alternatively, as for n > 1 {\displaystyle n>1} {\displaystyle n>1} the magnitude of the term ( φ 1 ) n {\displaystyle \textstyle {\bigl (}{-\varphi ^{-1}}{\bigr )}^{n}} {\displaystyle \textstyle {\bigl (}{-\varphi ^{-1}}{\bigr )}^{n}} is less than 1/2, L n {\displaystyle L_{n}} {\displaystyle L_{n}} is the closest integer to φ n {\displaystyle \varphi ^{n}} {\displaystyle \varphi ^{n}} or, equivalently, the integer part of φ n + 1 / 2 {\displaystyle \varphi ^{n}+1/2} {\displaystyle \varphi ^{n}+1/2}, also written as φ n + 1 / 2 {\displaystyle \lfloor \varphi ^{n}+1/2\rfloor } {\displaystyle \lfloor \varphi ^{n}+1/2\rfloor }.

Combining the above with Binet's formula,

F n = φ n ( 1 φ ) n 5 , {\displaystyle F_{n}={\frac {\varphi ^{n}-(1-\varphi )^{n}}{\sqrt {5}}},,円} {\displaystyle F_{n}={\frac {\varphi ^{n}-(1-\varphi )^{n}}{\sqrt {5}}},,円}

a formula for φ n {\displaystyle \varphi ^{n}} {\displaystyle \varphi ^{n}} is obtained:

φ n = L n + F n 5 2 . {\displaystyle \varphi ^{n}={{L_{n}+F_{n}{\sqrt {5}}} \over 2},円.} {\displaystyle \varphi ^{n}={{L_{n}+F_{n}{\sqrt {5}}} \over 2},円.}

For integers n ≥ 2, we also get:

φ n = L n ( φ 1 ) n = L n ( 1 ) n L n 1 L n 3 + R {\displaystyle \varphi ^{n}=L_{n}-{\bigl (}{-\varphi ^{-1}}{\bigr )}^{n}=L_{n}-(-1)^{n}L_{n}^{-1}-L_{n}^{-3}+R} {\displaystyle \varphi ^{n}=L_{n}-{\bigl (}{-\varphi ^{-1}}{\bigr )}^{n}=L_{n}-(-1)^{n}L_{n}^{-1}-L_{n}^{-3}+R}

with remainder R satisfying

| R | < 3 L n 5 {\displaystyle \vert R\vert <3L_{n}^{-5}} {\displaystyle \vert R\vert <3L_{n}^{-5}}.

Lucas identities

[edit ]

Many of the Fibonacci identities have parallels in Lucas numbers. For example, the Cassini identity becomes

L n 2 L n 1 L n + 1 = ( 1 ) n 5 {\displaystyle L_{n}^{2}-L_{n-1}L_{n+1}=(-1)^{n}5} {\displaystyle L_{n}^{2}-L_{n-1}L_{n+1}=(-1)^{n}5}

Also

k = 0 n L k = L n + 2 1 {\displaystyle \sum _{k=0}^{n}L_{k}=L_{n+2}-1} {\displaystyle \sum _{k=0}^{n}L_{k}=L_{n+2}-1}
k = 0 n L k 2 = L n L n + 1 + 2 {\displaystyle \sum _{k=0}^{n}L_{k}^{2}=L_{n}L_{n+1}+2} {\displaystyle \sum _{k=0}^{n}L_{k}^{2}=L_{n}L_{n+1}+2}
2 L n 1 2 + L n 2 = L 2 n + 1 + 5 F n 2 2 {\displaystyle 2L_{n-1}^{2}+L_{n}^{2}=L_{2n+1}+5F_{n-2}^{2}} {\displaystyle 2L_{n-1}^{2}+L_{n}^{2}=L_{2n+1}+5F_{n-2}^{2}}

where F n = L n 1 + L n + 1 5 {\displaystyle \textstyle F_{n}={\frac {L_{n-1}+L_{n+1}}{5}}} {\displaystyle \textstyle F_{n}={\frac {L_{n-1}+L_{n+1}}{5}}}.

L n k = j = 0 k 2 ( 1 ) n j ( k j ) L ( k 2 j ) n {\displaystyle L_{n}^{k}=\sum _{j=0}^{\lfloor {\frac {k}{2}}\rfloor }(-1)^{nj}{\binom {k}{j}}L'_{(k-2j)n}} {\displaystyle L_{n}^{k}=\sum _{j=0}^{\lfloor {\frac {k}{2}}\rfloor }(-1)^{nj}{\binom {k}{j}}L'_{(k-2j)n}}

where L n = L n {\displaystyle L'_{n}=L_{n}} {\displaystyle L'_{n}=L_{n}} except for L 0 = 1 {\displaystyle L'_{0}=1} {\displaystyle L'_{0}=1}.

For example if n is odd, L n 3 = L 3 n 3 L n {\displaystyle L_{n}^{3}=L'_{3n}-3L'_{n}} {\displaystyle L_{n}^{3}=L'_{3n}-3L'_{n}} and L n 4 = L 4 n 4 L 2 n + 6 L 0 {\displaystyle L_{n}^{4}=L'_{4n}-4L'_{2n}+6L'_{0}} {\displaystyle L_{n}^{4}=L'_{4n}-4L'_{2n}+6L'_{0}}

Checking, L 3 = 4 , 4 3 = 64 = 76 3 ( 4 ) {\displaystyle L_{3}=4,4^{3}=64=76-3(4)} {\displaystyle L_{3}=4,4^{3}=64=76-3(4)}, and 256 = 322 4 ( 18 ) + 6 {\displaystyle 256=322-4(18)+6} {\displaystyle 256=322-4(18)+6}

Generating function

[edit ]

The ordinary generating function of the sequence of Lucas numbers is the power series

Φ ( x ) = k = 0 L k x k = 2 + x + 3 x 2 + 4 x 3 + 7 x 4 + 11 x 5 + . {\displaystyle \Phi (x)=\sum _{k=0}^{\infty }L_{k}x^{k}=2+x+3x^{2}+4x^{3}+7x^{4}+11x^{5}+\cdots .} {\displaystyle \Phi (x)=\sum _{k=0}^{\infty }L_{k}x^{k}=2+x+3x^{2}+4x^{3}+7x^{4}+11x^{5}+\cdots .}

This series is convergent for any complex number x {\displaystyle x} {\displaystyle x} satisfying | x | < 1 / φ 0.618 , {\displaystyle |x|<1/\varphi \approx 0.618,} {\displaystyle |x|<1/\varphi \approx 0.618,} and its sum has a simple closed form: Φ ( x ) = 2 x 1 x x 2 . {\displaystyle \Phi (x)={\frac {2-x}{1-x-x^{2}}}.} {\displaystyle \Phi (x)={\frac {2-x}{1-x-x^{2}}}.}

This can be proved by multiplying by ( 1 x x 2 ) {\textstyle (1-x-x^{2})} {\textstyle (1-x-x^{2})}: ( 1 x x 2 ) Φ ( x ) = k = 0 L k x k k = 0 L k x k + 1 k = 0 L k x k + 2 = k = 0 L k x k k = 1 L k 1 x k k = 2 L k 2 x k = 2 x 0 + 1 x 1 2 x 1 + k = 2 ( L k L k 1 L k 2 ) x k = 2 x , {\displaystyle {\begin{aligned}(1-x-x^{2})\Phi (x)&=\sum _{k=0}^{\infty }L_{k}x^{k}-\sum _{k=0}^{\infty }L_{k}x^{k+1}-\sum _{k=0}^{\infty }L_{k}x^{k+2}\\&=\sum _{k=0}^{\infty }L_{k}x^{k}-\sum _{k=1}^{\infty }L_{k-1}x^{k}-\sum _{k=2}^{\infty }L_{k-2}x^{k}\\&=2x^{0}+1x^{1}-2x^{1}+\sum _{k=2}^{\infty }(L_{k}-L_{k-1}-L_{k-2})x^{k}\\&=2-x,\end{aligned}}} {\displaystyle {\begin{aligned}(1-x-x^{2})\Phi (x)&=\sum _{k=0}^{\infty }L_{k}x^{k}-\sum _{k=0}^{\infty }L_{k}x^{k+1}-\sum _{k=0}^{\infty }L_{k}x^{k+2}\\&=\sum _{k=0}^{\infty }L_{k}x^{k}-\sum _{k=1}^{\infty }L_{k-1}x^{k}-\sum _{k=2}^{\infty }L_{k-2}x^{k}\\&=2x^{0}+1x^{1}-2x^{1}+\sum _{k=2}^{\infty }(L_{k}-L_{k-1}-L_{k-2})x^{k}\\&=2-x,\end{aligned}}} where all terms involving x k {\displaystyle x^{k}} {\displaystyle x^{k}} for k 2 {\displaystyle k\geq 2} {\displaystyle k\geq 2} cancel out because of the defining Lucas numbers recurrence relation.

Φ ( 1 x ) {\displaystyle \Phi \!\left(-{\frac {1}{x}}\right)} {\displaystyle \Phi \!\left(-{\frac {1}{x}}\right)} gives the generating function for the negative indexed Lucas numbers, n = 0 ( 1 ) n L n x n = n = 0 L n x n {\displaystyle \sum _{n=0}^{\infty }(-1)^{n}L_{n}x^{-n}=\sum _{n=0}^{\infty }L_{-n}x^{-n}} {\displaystyle \sum _{n=0}^{\infty }(-1)^{n}L_{n}x^{-n}=\sum _{n=0}^{\infty }L_{-n}x^{-n}}, and

Φ ( 1 x ) = x + 2 x 2 1 x x 2 {\displaystyle \Phi \!\left(-{\frac {1}{x}}\right)={\frac {x+2x^{2}}{1-x-x^{2}}}} {\displaystyle \Phi \!\left(-{\frac {1}{x}}\right)={\frac {x+2x^{2}}{1-x-x^{2}}}}

Φ ( x ) {\displaystyle \Phi (x)} {\displaystyle \Phi (x)} satisfies the functional equation

Φ ( x ) Φ ( 1 x ) = 2 {\displaystyle \Phi (x)-\Phi \!\left(-{\frac {1}{x}}\right)=2} {\displaystyle \Phi (x)-\Phi \!\left(-{\frac {1}{x}}\right)=2}

As the generating function for the Fibonacci numbers is given by

s ( x ) = x 1 x x 2 {\displaystyle s(x)={\frac {x}{1-x-x^{2}}}} {\displaystyle s(x)={\frac {x}{1-x-x^{2}}}}

we have

s ( x ) + Φ ( x ) = 2 1 x x 2 {\displaystyle s(x)+\Phi (x)={\frac {2}{1-x-x^{2}}}} {\displaystyle s(x)+\Phi (x)={\frac {2}{1-x-x^{2}}}}

which proves that

F n + L n = 2 F n + 1 , {\displaystyle F_{n}+L_{n}=2F_{n+1},} {\displaystyle F_{n}+L_{n}=2F_{n+1},}

and

5 s ( x ) + Φ ( x ) = 2 x Φ ( 1 x ) = 2 1 1 x x 2 + 4 x 1 x x 2 {\displaystyle 5s(x)+\Phi (x)={\frac {2}{x}}\Phi (-{\frac {1}{x}})=2{\frac {1}{1-x-x^{2}}}+4{\frac {x}{1-x-x^{2}}}} {\displaystyle 5s(x)+\Phi (x)={\frac {2}{x}}\Phi (-{\frac {1}{x}})=2{\frac {1}{1-x-x^{2}}}+4{\frac {x}{1-x-x^{2}}}}

proves that

5 F n + L n = 2 L n + 1 {\displaystyle 5F_{n}+L_{n}=2L_{n+1}} {\displaystyle 5F_{n}+L_{n}=2L_{n+1}}

The partial fraction decomposition is given by

Φ ( x ) = 1 1 ϕ x + 1 1 ψ x {\displaystyle \Phi (x)={\frac {1}{1-\phi x}}+{\frac {1}{1-\psi x}}} {\displaystyle \Phi (x)={\frac {1}{1-\phi x}}+{\frac {1}{1-\psi x}}}

where ϕ = 1 + 5 2 {\displaystyle \phi ={\frac {1+{\sqrt {5}}}{2}}} {\displaystyle \phi ={\frac {1+{\sqrt {5}}}{2}}} is the golden ratio and ψ = 1 5 2 {\displaystyle \psi ={\frac {1-{\sqrt {5}}}{2}}} {\displaystyle \psi ={\frac {1-{\sqrt {5}}}{2}}} is its conjugate.

This can be used to prove the generating function, as

n = 0 L n x n = n = 0 ( ϕ n + ψ n ) x n = n = 0 ϕ n x n + n = 0 ψ n x n = 1 1 ϕ x + 1 1 ψ x = Φ ( x ) {\displaystyle \sum _{n=0}^{\infty }L_{n}x^{n}=\sum _{n=0}^{\infty }(\phi ^{n}+\psi ^{n})x^{n}=\sum _{n=0}^{\infty }\phi ^{n}x^{n}+\sum _{n=0}^{\infty }\psi ^{n}x^{n}={\frac {1}{1-\phi x}}+{\frac {1}{1-\psi x}}=\Phi (x)} {\displaystyle \sum _{n=0}^{\infty }L_{n}x^{n}=\sum _{n=0}^{\infty }(\phi ^{n}+\psi ^{n})x^{n}=\sum _{n=0}^{\infty }\phi ^{n}x^{n}+\sum _{n=0}^{\infty }\psi ^{n}x^{n}={\frac {1}{1-\phi x}}+{\frac {1}{1-\psi x}}=\Phi (x)}

Using x {\displaystyle x} {\displaystyle x} equal to any of 0.01, 0.001, 0.0001, etc. lays out the first Lucas numbers in the decimal expansion of Φ ( x ) {\displaystyle \Phi (x)} {\displaystyle \Phi (x)}. For example, Φ ( 0.001 ) = 1.999 0.998999 = 1999000 998999 = 2.001003004007011018029047 . {\displaystyle \Phi (0.001)={\frac {1.999}{0.998999}}={\frac {1999000}{998999}}=2.001003004007011018029047\ldots .} {\displaystyle \Phi (0.001)={\frac {1.999}{0.998999}}={\frac {1999000}{998999}}=2.001003004007011018029047\ldots .}

Congruence relations

[edit ]

If F n 5 {\displaystyle F_{n}\geq 5} {\displaystyle F_{n}\geq 5} is a Fibonacci number then no Lucas number is divisible by F n {\displaystyle F_{n}} {\displaystyle F_{n}}.

The Lucas numbers satisfy Gauss congruence. This implies that L n {\displaystyle L_{n}} {\displaystyle L_{n}} is congruent to 1 modulo n {\displaystyle n} {\displaystyle n} if n {\displaystyle n} {\displaystyle n} is prime. The composite values of n {\displaystyle n} {\displaystyle n} which satisfy this property are known as Fibonacci pseudoprimes.

L n L n 4 {\displaystyle L_{n}-L_{n-4}} {\displaystyle L_{n}-L_{n-4}} is congruent to 0 modulo 5.

Lucas primes

[edit ]

A Lucas prime is a Lucas number that is prime. The first few Lucas primes are

2, 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, ... (sequence A005479 in the OEIS).

The indices of these primes are (for example, L4 = 7)

0, 2, 4, 5, 7, 8, 11, 13, 16, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113, 313, 353, 503, 613, 617, 863, 1097, 1361, 4787, 4793, 5851, 7741, 8467, ... (sequence A001606 in the OEIS).

As of September 2015[update] , the largest confirmed Lucas prime is L148091, which has 30950 decimal digits.[4] As of August 2022[update] , the largest known Lucas probable prime is L5466311, with 1,142,392 decimal digits.[5]

If Ln is prime then n is 0, prime, or a power of 2.[6] L2m is prime for m = 1, 2, 3, and 4 and no other known values of m.

Lucas polynomials

[edit ]

In the same way as Fibonacci polynomials are derived from the Fibonacci numbers, the Lucas polynomials L n ( x ) {\displaystyle L_{n}(x)} {\displaystyle L_{n}(x)} are a polynomial sequence derived from the Lucas numbers.

Continued fractions for powers of the golden ratio

[edit ]

For all but the smallest values of n, the integer Ln very closely approximates the n-th power of the golden ratio,  φ n {\displaystyle \varphi ^{n}} {\displaystyle \varphi ^{n}}. Furthermore, close rational approximations for powers of the golden ratio can be obtained from their continued fractions.

For positive integers n, the continued fractions are:

φ 2 n 1 = [ L 2 n 1 ; L 2 n 1 , L 2 n 1 , L 2 n 1 , ] {\displaystyle \varphi ^{2n-1}=[L_{2n-1};L_{2n-1},L_{2n-1},L_{2n-1},\ldots ]} {\displaystyle \varphi ^{2n-1}=[L_{2n-1};L_{2n-1},L_{2n-1},L_{2n-1},\ldots ]}
φ 2 n = [ L 2 n 1 ; 1 , L 2 n 2 , 1 , L 2 n 2 , 1 , L 2 n 2 , 1 , ] {\displaystyle \varphi ^{2n}=[L_{2n}-1;1,L_{2n}-2,1,L_{2n}-2,1,L_{2n}-2,1,\ldots ]} {\displaystyle \varphi ^{2n}=[L_{2n}-1;1,L_{2n}-2,1,L_{2n}-2,1,L_{2n}-2,1,\ldots ]}.

For example:

φ 5 = [ 11 ; 11 , 11 , 11 , ] {\displaystyle \varphi ^{5}=[11;11,11,11,\ldots ]} {\displaystyle \varphi ^{5}=[11;11,11,11,\ldots ]}

is the limit of

11 1 , 122 11 , 1353 122 , 15005 1353 , {\displaystyle {\frac {11}{1}},{\frac {122}{11}},{\frac {1353}{122}},{\frac {15005}{1353}},\ldots } {\displaystyle {\frac {11}{1}},{\frac {122}{11}},{\frac {1353}{122}},{\frac {15005}{1353}},\ldots }

with the error in each term being about 1% of the error in the previous term; and

φ 6 = [ 18 1 ; 1 , 18 2 , 1 , 18 2 , 1 , 18 2 , 1 , ] = [ 17 ; 1 , 16 , 1 , 16 , 1 , 16 , 1 , ] {\displaystyle \varphi ^{6}=[18-1;1,18-2,1,18-2,1,18-2,1,\ldots ]=[17;1,16,1,16,1,16,1,\ldots ]} {\displaystyle \varphi ^{6}=[18-1;1,18-2,1,18-2,1,18-2,1,\ldots ]=[17;1,16,1,16,1,16,1,\ldots ]}

is the limit of

17 1 , 18 1 , 305 17 , 323 18 , 5473 305 , 5796 323 , 98209 5473 , 104005 5796 , {\displaystyle {\frac {17}{1}},{\frac {18}{1}},{\frac {305}{17}},{\frac {323}{18}},{\frac {5473}{305}},{\frac {5796}{323}},{\frac {98209}{5473}},{\frac {104005}{5796}},\ldots } {\displaystyle {\frac {17}{1}},{\frac {18}{1}},{\frac {305}{17}},{\frac {323}{18}},{\frac {5473}{305}},{\frac {5796}{323}},{\frac {98209}{5473}},{\frac {104005}{5796}},\ldots }

with the error in each term being about 0.3% that of the second previous term.

Applications

[edit ]

Lucas numbers are the second most common pattern in sunflowers after Fibonacci numbers, when clockwise and counter-clockwise spirals are counted, according to an analysis of 657 sunflowers in 2016.[7]

See also

[edit ]

References

[edit ]
  1. ^ a b Weisstein, Eric W. "Lucas Number". mathworld.wolfram.com. Retrieved 2020年08月11日.
  2. ^ Parker, Matt (2014). "13". Things to Make and Do in the Fourth Dimension. Farrar, Straus and Giroux. p. 284. ISBN 978-0-374-53563-6.
  3. ^ Parker, Matt (2014). "13". Things to Make and Do in the Fourth Dimension. Farrar, Straus and Giroux. p. 282. ISBN 978-0-374-53563-6.
  4. ^ "The Top Twenty: Lucas Number". primes.utm.edu. Retrieved 6 January 2022.
  5. ^ "Henri & Renaud Lifchitz's PRP Top - Search by form". www.primenumbers.net. Retrieved 6 January 2022.
  6. ^ Chris Caldwell, "The Prime Glossary: Lucas prime" from The Prime Pages.
  7. ^ Swinton, Jonathan; Ochu, Erinma; null, null (2016). "Novel Fibonacci and non-Fibonacci structure in the sunflower: results of a citizen science experiment". Royal Society Open Science. 3 (5) 160091. Bibcode:2016RSOS....360091S. doi:10.1098/rsos.160091. PMC 4892450 . PMID 27293788.
[edit ]
Prime number classes
By formula
By integer sequence
By property
Base-dependent
Patterns
k-tuples
By size
Complex numbers
Composite numbers
Related topics
First 60 primes
Classes of natural numbers
×ばつ_2b_±_1276">Of the form a × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via a sieve
Sorting related
Graphemics related
Integer sequences
Basic
Advanced (list)
Properties of sequences
Properties of series
Series
Convergence
Explicit series
Convergent
Divergent
Kinds of series
Hypergeometric series

AltStyle によって変換されたページ (->オリジナル) /