Lommel polynomial
Appearance
From Wikipedia, the free encyclopedia
Concept in mathematics
A Lommel polynomial Rm,ν(z) is a polynomial in 1/z giving the recurrence relation
- {\displaystyle \displaystyle J_{m+\nu }(z)=J_{\nu }(z)R_{m,\nu }(z)-J_{\nu -1}(z)R_{m-1,\nu +1}(z)}
where Jν(z) is a Bessel function of the first kind.[1]
They are given explicitly by
- {\displaystyle R_{m,\nu }(z)=\sum _{n=0}^{[m/2]}{\frac {(-1)^{n}(m-n)!\Gamma (\nu +m-n)}{n!(m-2n)!\Gamma (\nu +n)}}(z/2)^{2n-m}.}
See also
[edit ]References
[edit ]- ^ Eugen von Lommel (1871). "Zur Theorie der Bessel'schen Functionen". Mathematische Annalen. 4 (1). Berlin / Heidelberg: Springer: 103–116. doi:10.1007/BF01443302.
- Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G. (1953), Higher transcendental functions. Vol II (PDF), McGraw-Hill Book Company, Inc., New York-Toronto-London, MR 0058756
- Ivanov, A. B. (2001) [1994], "Lommel polynomial", Encyclopedia of Mathematics , EMS Press
Stub icon
This polynomial-related article is a stub. You can help Wikipedia by expanding it.