K-function
In mathematics, the K-function, typically denoted K(z), is a generalization of the hyperfactorial to complex numbers, similar to the generalization of the factorial to the gamma function.
Definition
[edit ]There are multiple equivalent definitions of the K-function.
The direct definition:
- {\displaystyle K(z)=(2\pi )^{-{\frac {z-1}{2}}}\exp \left[{\binom {z}{2}}+\int _{0}^{z-1}\ln \Gamma (t+1),円dt\right].}
Definition via
- {\displaystyle K(z)=\exp {\bigl [}\zeta '(-1,z)-\zeta '(-1){\bigr ]}}
where ζ′(z) denotes the derivative of the Riemann zeta function, ζ(a,z) denotes the Hurwitz zeta function and
- {\displaystyle \zeta '(a,z)\ {\stackrel {\mathrm {def} }{=}}\ \left.{\frac {\partial \zeta (s,z)}{\partial s}}\right|_{s=a},\ \ \zeta (s,q)=\sum _{k=0}^{\infty }(k+q)^{-s}}
Definition via polygamma function:[1]
- {\displaystyle K(z)=\exp \left[\psi ^{(-2)}(z)+{\frac {z^{2}-z}{2}}-{\frac {z}{2}}\ln 2\pi \right]}
Definition via balanced generalization of the polygamma function:[2]
- {\displaystyle K(z)=A\exp \left[\psi (-2,z)+{\frac {z^{2}-z}{2}}\right]}
where A is the Glaisher constant.
It can be defined via unique characterization, similar to how the gamma function can be uniquely characterized by the Bohr-Mollerup Theorem:
Let {\displaystyle f:(0,\infty )\to \mathbb {R} } be a solution to the functional equation {\displaystyle f(x+1)-f(x)=x\ln x}, such that there exists some {\displaystyle M>0}, such that given any distinct {\displaystyle x_{0},x_{1},x_{2},x_{3}\in (M,\infty )}, the divided difference {\displaystyle f[x_{0},x_{1},x_{2},x_{3}]\geq 0}. Such functions are precisely {\displaystyle f=\ln K+C}, where {\displaystyle C} is an arbitrary constant.[3]
Properties
[edit ]For α > 0:
- {\displaystyle \int _{\alpha }^{\alpha +1}\ln K(x),円dx-\int _{0}^{1}\ln K(x),円dx={\tfrac {1}{2}}\alpha ^{2}\left(\ln \alpha -{\tfrac {1}{2}}\right)}
Let {\displaystyle f(\alpha )=\int _{\alpha }^{\alpha +1}\ln K(x),円dx}
Differentiating this identity now with respect to α yields:
- {\displaystyle f'(\alpha )=\ln K(\alpha +1)-\ln K(\alpha )}
Applying the logarithm rule we get
- {\displaystyle f'(\alpha )=\ln {\frac {K(\alpha +1)}{K(\alpha )}}}
By the definition of the K-function we write
- {\displaystyle f'(\alpha )=\alpha \ln \alpha }
And so
- {\displaystyle f(\alpha )={\tfrac {1}{2}}\alpha ^{2}\left(\ln \alpha -{\tfrac {1}{2}}\right)+C}
Setting α = 0 we have
- {\displaystyle \int _{0}^{1}\ln K(x),円dx=\lim _{t\rightarrow 0}\left[{\tfrac {1}{2}}t^{2}\left(\ln t-{\tfrac {1}{2}}\right)\right]+C\ =C}
Functional equations
[edit ]The K-function is closely related to the gamma function and the Barnes G-function. For all complex {\displaystyle z}, {\displaystyle K(z)G(z)=e^{(z-1)\ln \Gamma (z)}}
Multiplication formula
[edit ]Similar to the multiplication formula for the gamma function:
- {\displaystyle \prod _{j=1}^{n-1}\Gamma \left({\frac {j}{n}}\right)={\sqrt {\frac {(2\pi )^{n-1}}{n}}}}
there exists a multiplication formula for the K-Function involving Glaisher's constant:[4]
- {\displaystyle \prod _{j=1}^{n-1}K\left({\frac {j}{n}}\right)=A^{\frac {n^{2}-1}{n}}n^{-{\frac {1}{12n}}}e^{\frac {1-n^{2}}{12n}}}
Integer values
[edit ]For all non-negative integers,{\displaystyle K(n+1)=1^{1}\cdot 2^{2}\cdot 3^{3}\cdots n^{n}=H(n)}where {\displaystyle H} is the hyperfactorial.
The first values are
References
[edit ]- ^ Adamchik, Victor S. (1998), "PolyGamma Functions of Negative Order", Journal of Computational and Applied Mathematics, 100 (2): 191–199, doi:10.1016/S0377-0427(98)00192-7, archived from the original on 2016年03月03日
- ^ Espinosa, Olivier; Moll, Victor Hugo (2004) [April 2004], "A Generalized polygamma function" (PDF), Integral Transforms and Special Functions, 15 (2): 101–115, doi:10.1080/10652460310001600573, archived (PDF) from the original on 2023年05月14日
- ^ Marichal, Jean-Luc; Zenaïdi, Naïm (2024). "A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions: a Tutorial" (PDF). Bitstream. 98 (2): 455–481. arXiv:2207.12694 . doi:10.1007/s00010-023-00968-9. Archived (PDF) from the original on 2023年04月05日.
- ^ Sondow, Jonathan; Hadjicostas, Petros (2006年10月16日). "The generalized-Euler-constant function γ(z) and a generalization of Somos's quadratic recurrence constant". Journal of Mathematical Analysis and Applications. 332: 292–314. arXiv:math/0610499 . doi:10.1016/j.jmaa.2006年09月08日1.