Jump to content
Wikipedia The Free Encyclopedia

K-function

From Wikipedia, the free encyclopedia
For the k-function, see Bateman function.

In mathematics, the K-function, typically denoted K(z), is a generalization of the hyperfactorial to complex numbers, similar to the generalization of the factorial to the gamma function.

Definition

[edit ]

There are multiple equivalent definitions of the K-function.

The direct definition:

K ( z ) = ( 2 π ) z 1 2 exp [ ( z 2 ) + 0 z 1 ln Γ ( t + 1 ) d t ] . {\displaystyle K(z)=(2\pi )^{-{\frac {z-1}{2}}}\exp \left[{\binom {z}{2}}+\int _{0}^{z-1}\ln \Gamma (t+1),円dt\right].} {\displaystyle K(z)=(2\pi )^{-{\frac {z-1}{2}}}\exp \left[{\binom {z}{2}}+\int _{0}^{z-1}\ln \Gamma (t+1),円dt\right].}

Definition via

K ( z ) = exp [ ζ ( 1 , z ) ζ ( 1 ) ] {\displaystyle K(z)=\exp {\bigl [}\zeta '(-1,z)-\zeta '(-1){\bigr ]}} {\displaystyle K(z)=\exp {\bigl [}\zeta '(-1,z)-\zeta '(-1){\bigr ]}}

where ζ′(z) denotes the derivative of the Riemann zeta function, ζ(a,z) denotes the Hurwitz zeta function and

ζ ( a , z )   = d e f   ζ ( s , z ) s | s = a ,     ζ ( s , q ) = k = 0 ( k + q ) s {\displaystyle \zeta '(a,z)\ {\stackrel {\mathrm {def} }{=}}\ \left.{\frac {\partial \zeta (s,z)}{\partial s}}\right|_{s=a},\ \ \zeta (s,q)=\sum _{k=0}^{\infty }(k+q)^{-s}} {\displaystyle \zeta '(a,z)\ {\stackrel {\mathrm {def} }{=}}\ \left.{\frac {\partial \zeta (s,z)}{\partial s}}\right|_{s=a},\ \ \zeta (s,q)=\sum _{k=0}^{\infty }(k+q)^{-s}}

Definition via polygamma function:[1]

K ( z ) = exp [ ψ ( 2 ) ( z ) + z 2 z 2 z 2 ln 2 π ] {\displaystyle K(z)=\exp \left[\psi ^{(-2)}(z)+{\frac {z^{2}-z}{2}}-{\frac {z}{2}}\ln 2\pi \right]} {\displaystyle K(z)=\exp \left[\psi ^{(-2)}(z)+{\frac {z^{2}-z}{2}}-{\frac {z}{2}}\ln 2\pi \right]}

Definition via balanced generalization of the polygamma function:[2]

K ( z ) = A exp [ ψ ( 2 , z ) + z 2 z 2 ] {\displaystyle K(z)=A\exp \left[\psi (-2,z)+{\frac {z^{2}-z}{2}}\right]} {\displaystyle K(z)=A\exp \left[\psi (-2,z)+{\frac {z^{2}-z}{2}}\right]}

where A is the Glaisher constant.

It can be defined via unique characterization, similar to how the gamma function can be uniquely characterized by the Bohr-Mollerup Theorem:

Let f : ( 0 , ) R {\displaystyle f:(0,\infty )\to \mathbb {R} } {\displaystyle f:(0,\infty )\to \mathbb {R} } be a solution to the functional equation f ( x + 1 ) f ( x ) = x ln x {\displaystyle f(x+1)-f(x)=x\ln x} {\displaystyle f(x+1)-f(x)=x\ln x}, such that there exists some M > 0 {\displaystyle M>0} {\displaystyle M>0}, such that given any distinct x 0 , x 1 , x 2 , x 3 ( M , ) {\displaystyle x_{0},x_{1},x_{2},x_{3}\in (M,\infty )} {\displaystyle x_{0},x_{1},x_{2},x_{3}\in (M,\infty )}, the divided difference f [ x 0 , x 1 , x 2 , x 3 ] 0 {\displaystyle f[x_{0},x_{1},x_{2},x_{3}]\geq 0} {\displaystyle f[x_{0},x_{1},x_{2},x_{3}]\geq 0}. Such functions are precisely f = ln K + C {\displaystyle f=\ln K+C} {\displaystyle f=\ln K+C}, where C {\displaystyle C} {\displaystyle C} is an arbitrary constant.[3]

Properties

[edit ]

For α > 0:

α α + 1 ln K ( x ) d x 0 1 ln K ( x ) d x = 1 2 α 2 ( ln α 1 2 ) {\displaystyle \int _{\alpha }^{\alpha +1}\ln K(x),円dx-\int _{0}^{1}\ln K(x),円dx={\tfrac {1}{2}}\alpha ^{2}\left(\ln \alpha -{\tfrac {1}{2}}\right)} {\displaystyle \int _{\alpha }^{\alpha +1}\ln K(x),円dx-\int _{0}^{1}\ln K(x),円dx={\tfrac {1}{2}}\alpha ^{2}\left(\ln \alpha -{\tfrac {1}{2}}\right)}
Proof
Proof

Let f ( α ) = α α + 1 ln K ( x ) d x {\displaystyle f(\alpha )=\int _{\alpha }^{\alpha +1}\ln K(x),円dx} {\displaystyle f(\alpha )=\int _{\alpha }^{\alpha +1}\ln K(x),円dx}

Differentiating this identity now with respect to α yields:

f ( α ) = ln K ( α + 1 ) ln K ( α ) {\displaystyle f'(\alpha )=\ln K(\alpha +1)-\ln K(\alpha )} {\displaystyle f'(\alpha )=\ln K(\alpha +1)-\ln K(\alpha )}

Applying the logarithm rule we get

f ( α ) = ln K ( α + 1 ) K ( α ) {\displaystyle f'(\alpha )=\ln {\frac {K(\alpha +1)}{K(\alpha )}}} {\displaystyle f'(\alpha )=\ln {\frac {K(\alpha +1)}{K(\alpha )}}}

By the definition of the K-function we write

f ( α ) = α ln α {\displaystyle f'(\alpha )=\alpha \ln \alpha } {\displaystyle f'(\alpha )=\alpha \ln \alpha }

And so

f ( α ) = 1 2 α 2 ( ln α 1 2 ) + C {\displaystyle f(\alpha )={\tfrac {1}{2}}\alpha ^{2}\left(\ln \alpha -{\tfrac {1}{2}}\right)+C} {\displaystyle f(\alpha )={\tfrac {1}{2}}\alpha ^{2}\left(\ln \alpha -{\tfrac {1}{2}}\right)+C}

Setting α = 0 we have

0 1 ln K ( x ) d x = lim t 0 [ 1 2 t 2 ( ln t 1 2 ) ] + C   = C {\displaystyle \int _{0}^{1}\ln K(x),円dx=\lim _{t\rightarrow 0}\left[{\tfrac {1}{2}}t^{2}\left(\ln t-{\tfrac {1}{2}}\right)\right]+C\ =C} {\displaystyle \int _{0}^{1}\ln K(x),円dx=\lim _{t\rightarrow 0}\left[{\tfrac {1}{2}}t^{2}\left(\ln t-{\tfrac {1}{2}}\right)\right]+C\ =C}

Functional equations

[edit ]

The K-function is closely related to the gamma function and the Barnes G-function. For all complex z {\displaystyle z} {\displaystyle z}, K ( z ) G ( z ) = e ( z 1 ) ln Γ ( z ) {\displaystyle K(z)G(z)=e^{(z-1)\ln \Gamma (z)}} {\displaystyle K(z)G(z)=e^{(z-1)\ln \Gamma (z)}}

Multiplication formula

[edit ]

Similar to the multiplication formula for the gamma function:

j = 1 n 1 Γ ( j n ) = ( 2 π ) n 1 n {\displaystyle \prod _{j=1}^{n-1}\Gamma \left({\frac {j}{n}}\right)={\sqrt {\frac {(2\pi )^{n-1}}{n}}}} {\displaystyle \prod _{j=1}^{n-1}\Gamma \left({\frac {j}{n}}\right)={\sqrt {\frac {(2\pi )^{n-1}}{n}}}}

there exists a multiplication formula for the K-Function involving Glaisher's constant:[4]

j = 1 n 1 K ( j n ) = A n 2 1 n n 1 12 n e 1 n 2 12 n {\displaystyle \prod _{j=1}^{n-1}K\left({\frac {j}{n}}\right)=A^{\frac {n^{2}-1}{n}}n^{-{\frac {1}{12n}}}e^{\frac {1-n^{2}}{12n}}} {\displaystyle \prod _{j=1}^{n-1}K\left({\frac {j}{n}}\right)=A^{\frac {n^{2}-1}{n}}n^{-{\frac {1}{12n}}}e^{\frac {1-n^{2}}{12n}}}

Integer values

[edit ]

For all non-negative integers, K ( n + 1 ) = 1 1 2 2 3 3 n n = H ( n ) {\displaystyle K(n+1)=1^{1}\cdot 2^{2}\cdot 3^{3}\cdots n^{n}=H(n)} {\displaystyle K(n+1)=1^{1}\cdot 2^{2}\cdot 3^{3}\cdots n^{n}=H(n)}where H {\displaystyle H} {\displaystyle H} is the hyperfactorial.

The first values are

1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, ... (sequence A002109 in the OEIS).

References

[edit ]
  1. ^ Adamchik, Victor S. (1998), "PolyGamma Functions of Negative Order", Journal of Computational and Applied Mathematics, 100 (2): 191–199, doi:10.1016/S0377-0427(98)00192-7, archived from the original on 2016年03月03日
  2. ^ Espinosa, Olivier; Moll, Victor Hugo (2004) [April 2004], "A Generalized polygamma function" (PDF), Integral Transforms and Special Functions, 15 (2): 101–115, doi:10.1080/10652460310001600573, archived (PDF) from the original on 2023年05月14日
  3. ^ Marichal, Jean-Luc; Zenaïdi, Naïm (2024). "A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions: a Tutorial" (PDF). Bitstream. 98 (2): 455–481. arXiv:2207.12694 . doi:10.1007/s00010-023-00968-9. Archived (PDF) from the original on 2023年04月05日.
  4. ^ Sondow, Jonathan; Hadjicostas, Petros (2006年10月16日). "The generalized-Euler-constant function γ(z) and a generalization of Somos's quadratic recurrence constant". Journal of Mathematical Analysis and Applications. 332: 292–314. arXiv:math/0610499 . doi:10.1016/j.jmaa.2006年09月08日1.
[edit ]

AltStyle によって変換されたページ (->オリジナル) /