Jump to content
Wikipedia The Free Encyclopedia

Jacobi transform

From Wikipedia, the free encyclopedia

In mathematics, Jacobi transform is an integral transform named after the mathematician Carl Gustav Jacob Jacobi, which uses Jacobi polynomials P n α , β ( x ) {\displaystyle P_{n}^{\alpha ,\beta }(x)} {\displaystyle P_{n}^{\alpha ,\beta }(x)} as kernels of the transform .[1] [2] [3] [4]

The Jacobi transform of a function F ( x ) {\displaystyle F(x)} {\displaystyle F(x)} is[5]

J { F ( x ) } = f α , β ( n ) = 1 1 ( 1 x ) α   ( 1 + x ) β   P n α , β ( x )   F ( x )   d x {\displaystyle J\{F(x)\}=f^{\alpha ,\beta }(n)=\int _{-1}^{1}(1-x)^{\alpha }\ (1+x)^{\beta }\ P_{n}^{\alpha ,\beta }(x)\ F(x)\ dx} {\displaystyle J\{F(x)\}=f^{\alpha ,\beta }(n)=\int _{-1}^{1}(1-x)^{\alpha }\ (1+x)^{\beta }\ P_{n}^{\alpha ,\beta }(x)\ F(x)\ dx}

The inverse Jacobi transform is given by

J 1 { f α , β ( n ) } = F ( x ) = n = 0 1 δ n f α , β ( n ) P n α , β ( x ) , where δ n = 2 α + β + 1 Γ ( n + α + 1 ) Γ ( n + β + 1 ) n ! ( α + β + 2 n + 1 ) Γ ( n + α + β + 1 ) {\displaystyle J^{-1}\{f^{\alpha ,\beta }(n)\}=F(x)=\sum _{n=0}^{\infty }{\frac {1}{\delta _{n}}}f^{\alpha ,\beta }(n)P_{n}^{\alpha ,\beta }(x),\quad {\text{where}}\quad \delta _{n}={\frac {2^{\alpha +\beta +1}\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{n!(\alpha +\beta +2n+1)\Gamma (n+\alpha +\beta +1)}}} {\displaystyle J^{-1}\{f^{\alpha ,\beta }(n)\}=F(x)=\sum _{n=0}^{\infty }{\frac {1}{\delta _{n}}}f^{\alpha ,\beta }(n)P_{n}^{\alpha ,\beta }(x),\quad {\text{where}}\quad \delta _{n}={\frac {2^{\alpha +\beta +1}\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{n!(\alpha +\beta +2n+1)\Gamma (n+\alpha +\beta +1)}}}

Some Jacobi transform pairs

[edit ]
Some Jacobi transform pairs
F ( x ) {\displaystyle F(x),円} {\displaystyle F(x),円} f α , β ( n ) {\displaystyle f^{\alpha ,\beta }(n),円} {\displaystyle f^{\alpha ,\beta }(n),円}
x m ,   m < n {\displaystyle x^{m},\ m<n,円} {\displaystyle x^{m},\ m<n,円} 0 {\displaystyle 0} {\displaystyle 0}
x n {\displaystyle x^{n},円} {\displaystyle x^{n},円} n ! ( α + β + 2 n + 1 ) δ n {\displaystyle n!(\alpha +\beta +2n+1)\delta _{n}} {\displaystyle n!(\alpha +\beta +2n+1)\delta _{n}}
P m α , β ( x ) {\displaystyle P_{m}^{\alpha ,\beta }(x),円} {\displaystyle P_{m}^{\alpha ,\beta }(x),円} δ n δ m , n {\displaystyle \delta _{n}\delta _{m,n}} {\displaystyle \delta _{n}\delta _{m,n}}
( 1 + x ) a β {\displaystyle (1+x)^{a-\beta },円} {\displaystyle (1+x)^{a-\beta },円} ( n + α n ) 2 α + a + 1 Γ ( a + 1 ) Γ ( α + 1 ) Γ ( a β + 1 ) Γ ( α + a + n + 2 ) Γ ( a β + n + 1 ) {\displaystyle {\binom {n+\alpha }{n}}2^{\alpha +a+1}{\frac {\Gamma (a+1)\Gamma (\alpha +1)\Gamma (a-\beta +1)}{\Gamma (\alpha +a+n+2)\Gamma (a-\beta +n+1)}}} {\displaystyle {\binom {n+\alpha }{n}}2^{\alpha +a+1}{\frac {\Gamma (a+1)\Gamma (\alpha +1)\Gamma (a-\beta +1)}{\Gamma (\alpha +a+n+2)\Gamma (a-\beta +n+1)}}}
( 1 x ) σ α ,   σ > 1 {\displaystyle (1-x)^{\sigma -\alpha },\ \Re \sigma >-1,円} {\displaystyle (1-x)^{\sigma -\alpha },\ \Re \sigma >-1,円} 2 σ + β + 1 n ! Γ ( α σ ) Γ ( σ + 1 ) Γ ( n + β + 1 ) Γ ( α σ + n ) Γ ( β + σ + n + 2 ) {\displaystyle {\frac {2^{\sigma +\beta +1}}{n!\Gamma (\alpha -\sigma )}}{\frac {\Gamma (\sigma +1)\Gamma (n+\beta +1)\Gamma (\alpha -\sigma +n)}{\Gamma (\beta +\sigma +n+2)}}} {\displaystyle {\frac {2^{\sigma +\beta +1}}{n!\Gamma (\alpha -\sigma )}}{\frac {\Gamma (\sigma +1)\Gamma (n+\beta +1)\Gamma (\alpha -\sigma +n)}{\Gamma (\beta +\sigma +n+2)}}}
( 1 x ) σ β P m α , σ ( x ) ,   σ > 1 {\displaystyle (1-x)^{\sigma -\beta }P_{m}^{\alpha ,\sigma }(x),\ \Re \sigma >-1,円} {\displaystyle (1-x)^{\sigma -\beta }P_{m}^{\alpha ,\sigma }(x),\ \Re \sigma >-1,円} 2 α + σ + 1 m ! ( n m ) ! Γ ( n + α + 1 ) Γ ( α + β + m + n + 1 ) Γ ( σ + m + 1 ) Γ ( α β + 1 ) Γ ( α + β + n + 1 ) Γ ( α + σ + m + n + 2 ) Γ ( α β + m + 1 ) {\displaystyle {\frac {2^{\alpha +\sigma +1}}{m!(n-m)!}}{\frac {\Gamma (n+\alpha +1)\Gamma (\alpha +\beta +m+n+1)\Gamma (\sigma +m+1)\Gamma (\alpha -\beta +1)}{\Gamma (\alpha +\beta +n+1)\Gamma (\alpha +\sigma +m+n+2)\Gamma (\alpha -\beta +m+1)}}} {\displaystyle {\frac {2^{\alpha +\sigma +1}}{m!(n-m)!}}{\frac {\Gamma (n+\alpha +1)\Gamma (\alpha +\beta +m+n+1)\Gamma (\sigma +m+1)\Gamma (\alpha -\beta +1)}{\Gamma (\alpha +\beta +n+1)\Gamma (\alpha +\sigma +m+n+2)\Gamma (\alpha -\beta +m+1)}}}
Some more Jacobi transform pairs
F ( x ) {\displaystyle F(x),円} {\displaystyle F(x),円} f α , β ( n ) {\displaystyle f^{\alpha ,\beta }(n),円} {\displaystyle f^{\alpha ,\beta }(n),円}
2 α + β Q 1 ( 1 z + Q ) α ( 1 + z + Q ) β ,   Q = ( 1 2 x z + z 2 ) 1 / 2 ,   | z | < 1 {\displaystyle 2^{\alpha +\beta }Q^{-1}(1-z+Q)^{-\alpha }(1+z+Q)^{-\beta },\ Q=(1-2xz+z^{2})^{1/2},\ |z|<1,円} {\displaystyle 2^{\alpha +\beta }Q^{-1}(1-z+Q)^{-\alpha }(1+z+Q)^{-\beta },\ Q=(1-2xz+z^{2})^{1/2},\ |z|<1,円} n = 0 δ n z n {\displaystyle \sum _{n=0}^{\infty }\delta _{n}z^{n}} {\displaystyle \sum _{n=0}^{\infty }\delta _{n}z^{n}}
( 1 x ) α ( 1 + x ) β d d x [ ( 1 x ) α + 1 ( 1 + x ) β + 1 d d x ] F ( x ) {\displaystyle (1-x)^{-\alpha }(1+x)^{-\beta }{\frac {d}{dx}}\left[(1-x)^{\alpha +1}(1+x)^{\beta +1}{\frac {d}{dx}}\right]F(x),円} {\displaystyle (1-x)^{-\alpha }(1+x)^{-\beta }{\frac {d}{dx}}\left[(1-x)^{\alpha +1}(1+x)^{\beta +1}{\frac {d}{dx}}\right]F(x),円} n ( n + α + β + 1 ) f α , β ( n ) {\displaystyle -n(n+\alpha +\beta +1)f^{\alpha ,\beta }(n)} {\displaystyle -n(n+\alpha +\beta +1)f^{\alpha ,\beta }(n)}
{ ( 1 x ) α ( 1 + x ) β d d x [ ( 1 x ) α + 1 ( 1 + x ) β + 1 d d x ] } k F ( x ) {\displaystyle \left\{(1-x)^{-\alpha }(1+x)^{-\beta }{\frac {d}{dx}}\left[(1-x)^{\alpha +1}(1+x)^{\beta +1}{\frac {d}{dx}}\right]\right\}^{k}F(x),円} {\displaystyle \left\{(1-x)^{-\alpha }(1+x)^{-\beta }{\frac {d}{dx}}\left[(1-x)^{\alpha +1}(1+x)^{\beta +1}{\frac {d}{dx}}\right]\right\}^{k}F(x),円} ( 1 ) k n k ( n + α + β + 1 ) k f α , β ( n ) {\displaystyle (-1)^{k}n^{k}(n+\alpha +\beta +1)^{k}f^{\alpha ,\beta }(n)} {\displaystyle (-1)^{k}n^{k}(n+\alpha +\beta +1)^{k}f^{\alpha ,\beta }(n)}

References

[edit ]
  1. ^ Debnath, L. "On Jacobi Transform." Bull. Cal. Math. Soc 55.3 (1963): 113-120.
  2. ^ Debnath, L. "SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS BY JACOBI TRANSFORM." BULLETIN OF THE CALCUTTA MATHEMATICAL SOCIETY 59.3-4 (1967): 155.
  3. ^ Scott, E. J. "Jacobi transforms." (1953).
  4. ^ Shen, Jie; Wang, Yingwei; Xia, Jianlin (2019). "Fast structured Jacobi-Jacobi transforms". Math. Comp. 88 (318): 1743–1772. doi:10.1090/mcom/3377 .
  5. ^ Debnath, Lokenath, and Dambaru Bhatta. Integral transforms and their applications. CRC press, 2014.


Stub icon

This mathematical physics-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /