Jacobi transform
Appearance
From Wikipedia, the free encyclopedia
In mathematics, Jacobi transform is an integral transform named after the mathematician Carl Gustav Jacob Jacobi, which uses Jacobi polynomials {\displaystyle P_{n}^{\alpha ,\beta }(x)} as kernels of the transform .[1] [2] [3] [4]
The Jacobi transform of a function {\displaystyle F(x)} is[5]
- {\displaystyle J\{F(x)\}=f^{\alpha ,\beta }(n)=\int _{-1}^{1}(1-x)^{\alpha }\ (1+x)^{\beta }\ P_{n}^{\alpha ,\beta }(x)\ F(x)\ dx}
The inverse Jacobi transform is given by
- {\displaystyle J^{-1}\{f^{\alpha ,\beta }(n)\}=F(x)=\sum _{n=0}^{\infty }{\frac {1}{\delta _{n}}}f^{\alpha ,\beta }(n)P_{n}^{\alpha ,\beta }(x),\quad {\text{where}}\quad \delta _{n}={\frac {2^{\alpha +\beta +1}\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{n!(\alpha +\beta +2n+1)\Gamma (n+\alpha +\beta +1)}}}
Some Jacobi transform pairs
[edit ]| {\displaystyle F(x),円} | {\displaystyle f^{\alpha ,\beta }(n),円} |
|---|---|
| {\displaystyle x^{m},\ m<n,円} | {\displaystyle 0} |
| {\displaystyle x^{n},円} | {\displaystyle n!(\alpha +\beta +2n+1)\delta _{n}} |
| {\displaystyle P_{m}^{\alpha ,\beta }(x),円} | {\displaystyle \delta _{n}\delta _{m,n}} |
| {\displaystyle (1+x)^{a-\beta },円} | {\displaystyle {\binom {n+\alpha }{n}}2^{\alpha +a+1}{\frac {\Gamma (a+1)\Gamma (\alpha +1)\Gamma (a-\beta +1)}{\Gamma (\alpha +a+n+2)\Gamma (a-\beta +n+1)}}} |
| {\displaystyle (1-x)^{\sigma -\alpha },\ \Re \sigma >-1,円} | {\displaystyle {\frac {2^{\sigma +\beta +1}}{n!\Gamma (\alpha -\sigma )}}{\frac {\Gamma (\sigma +1)\Gamma (n+\beta +1)\Gamma (\alpha -\sigma +n)}{\Gamma (\beta +\sigma +n+2)}}} |
| {\displaystyle (1-x)^{\sigma -\beta }P_{m}^{\alpha ,\sigma }(x),\ \Re \sigma >-1,円} | {\displaystyle {\frac {2^{\alpha +\sigma +1}}{m!(n-m)!}}{\frac {\Gamma (n+\alpha +1)\Gamma (\alpha +\beta +m+n+1)\Gamma (\sigma +m+1)\Gamma (\alpha -\beta +1)}{\Gamma (\alpha +\beta +n+1)\Gamma (\alpha +\sigma +m+n+2)\Gamma (\alpha -\beta +m+1)}}} |
| {\displaystyle F(x),円} | {\displaystyle f^{\alpha ,\beta }(n),円} |
|---|---|
| {\displaystyle 2^{\alpha +\beta }Q^{-1}(1-z+Q)^{-\alpha }(1+z+Q)^{-\beta },\ Q=(1-2xz+z^{2})^{1/2},\ |z|<1,円} | {\displaystyle \sum _{n=0}^{\infty }\delta _{n}z^{n}} |
| {\displaystyle (1-x)^{-\alpha }(1+x)^{-\beta }{\frac {d}{dx}}\left[(1-x)^{\alpha +1}(1+x)^{\beta +1}{\frac {d}{dx}}\right]F(x),円} | {\displaystyle -n(n+\alpha +\beta +1)f^{\alpha ,\beta }(n)} |
| {\displaystyle \left\{(1-x)^{-\alpha }(1+x)^{-\beta }{\frac {d}{dx}}\left[(1-x)^{\alpha +1}(1+x)^{\beta +1}{\frac {d}{dx}}\right]\right\}^{k}F(x),円} | {\displaystyle (-1)^{k}n^{k}(n+\alpha +\beta +1)^{k}f^{\alpha ,\beta }(n)} |
References
[edit ]- ^ Debnath, L. "On Jacobi Transform." Bull. Cal. Math. Soc 55.3 (1963): 113-120.
- ^ Debnath, L. "SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS BY JACOBI TRANSFORM." BULLETIN OF THE CALCUTTA MATHEMATICAL SOCIETY 59.3-4 (1967): 155.
- ^ Scott, E. J. "Jacobi transforms." (1953).
- ^ Shen, Jie; Wang, Yingwei; Xia, Jianlin (2019). "Fast structured Jacobi-Jacobi transforms". Math. Comp. 88 (318): 1743–1772. doi:10.1090/mcom/3377 .
- ^ Debnath, Lokenath, and Dambaru Bhatta. Integral transforms and their applications. CRC press, 2014.
Stub icon
This mathematical physics-related article is a stub. You can help Wikipedia by expanding it.