Invex function
In vector calculus, an invex function is a differentiable function {\displaystyle f} from {\displaystyle \mathbb {R} ^{n}} to {\displaystyle \mathbb {R} } for which there exists a vector valued function {\displaystyle \eta } such that
- {\displaystyle f(x)-f(u)\geq \eta (x,u)\cdot \nabla f(u),,円}
for all x and u.
Invex functions were introduced by Hanson as a generalization of convex functions.[1] Ben-Israel and Mond provided a simple proof that a function is invex if and only if every stationary point is a global minimum, a theorem first stated by Craven and Glover.[2] [3]
Hanson also showed that if the objective and the constraints of an optimization problem are invex with respect to the same function {\displaystyle \eta (x,u)}, then the Karush–Kuhn–Tucker conditions are sufficient for a global minimum.
Type I invex functions
[edit ]A slight generalization of invex functions called Type I invex functions are the most general class of functions for which the Karush–Kuhn–Tucker conditions are necessary and sufficient for a global minimum.[4] Consider a mathematical program of the form
{\displaystyle {\begin{array}{rl}\min &f(x)\\{\text{s.t.}}&g(x)\leq 0\end{array}}}
where {\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} } and {\displaystyle g:\mathbb {R} ^{n}\to \mathbb {R} ^{m}} are differentiable functions. Let {\displaystyle F=\{x\in \mathbb {R} ^{n}\;|\;g(x)\leq 0\}} denote the feasible region of this program. The function {\displaystyle f} is a Type I objective function and the function {\displaystyle g} is a Type I constraint function at {\displaystyle x_{0}} with respect to {\displaystyle \eta } if there exists a vector-valued function {\displaystyle \eta } defined on {\displaystyle F} such that
{\displaystyle f(x)-f(x_{0})\geq \eta (x)\cdot \nabla {f(x_{0})}}
and
{\displaystyle -g(x_{0})\geq \eta (x)\cdot \nabla {g(x_{0})}}
for all {\displaystyle x\in {F}}.[5] Note that, unlike invexity, Type I invexity is defined relative to a point {\displaystyle x_{0}}.
Theorem (Theorem 2.1 in[4] ): If {\displaystyle f} and {\displaystyle g} are Type I invex at a point {\displaystyle x^{*}} with respect to {\displaystyle \eta }, and the Karush–Kuhn–Tucker conditions are satisfied at {\displaystyle x^{*}}, then {\displaystyle x^{*}} is a global minimizer of {\displaystyle f} over {\displaystyle F}.
E-invex function
[edit ]Let {\displaystyle E} from {\displaystyle \mathbb {R} ^{n}} to {\displaystyle \mathbb {R} ^{n}} and {\displaystyle f} from {\displaystyle \mathbb {M} } to {\displaystyle \mathbb {R} } be an {\displaystyle E}-differentiable function on a nonempty open set {\displaystyle \mathbb {M} \subset \mathbb {R} ^{n}}. Then {\displaystyle f} is said to be an E-invex function at {\displaystyle u} if there exists a vector valued function {\displaystyle \eta } such that
- {\displaystyle (f\circ E)(x)-(f\circ E)(u)\geq \nabla (f\circ E)(u)\cdot \eta (E(x),E(u)),,円}
for all {\displaystyle x} and {\displaystyle u} in {\displaystyle \mathbb {M} }.
E-invex functions were introduced by Abdulaleem as a generalization of differentiable convex functions.[6]
E-type I Functions
[edit ]Let {\displaystyle E:\mathbb {R} ^{n}\to \mathbb {R} ^{n}}, and {\displaystyle M\subset \mathbb {R} ^{n}}be an open E-invex set. A vector-valued pair {\displaystyle (f,g)}, where {\displaystyle f} and {\displaystyle g} represent objective and constraint functions respectively, is said to be E-type I with respect to a vector-valued function {\displaystyle \eta :M\times M\to \mathbb {R} ^{n}}, at {\displaystyle u\in M}, if the following inequalities hold for all {\displaystyle x\in F_{E}=\{x\in \mathbb {R} ^{n}\;|\;g(E(x))\leq 0\}}:
{\displaystyle f_{i}(E(x))-f_{i}(E(u))\geq \nabla f_{i}(E(u))\cdot \eta (E(x),E(u)),}
{\displaystyle -g_{j}(E(u))\geq \nabla g_{j}(E(u))\cdot \eta (E(x),E(u)).}
Remark 1.
[edit ]If {\displaystyle f} and {\displaystyle g} are differentiable functions and {\displaystyle E(x)=x} ({\displaystyle E} is an identity map), then the definition of E-type I functions[7] reduces to the definition of type I functions introduced by Rueda and Hanson.[8]
See also
[edit ]
References
[edit ]- ^ Hanson, Morgan A. (1981). "On sufficiency of the Kuhn-Tucker conditions". Journal of Mathematical Analysis and Applications. 80 (2): 545–550. doi:10.1016/0022-247X(81)90123-2. hdl:10338.dmlcz/141569 . ISSN 0022-247X.
- ^ Ben-Israel, A.; Mond, B. (1986). "What is invexity?". The ANZIAM Journal. 28 (1): 1–9. doi:10.1017/S0334270000005142 . ISSN 1839-4078.
- ^ Craven, B. D.; Glover, B. M. (1985). "Invex functions and duality". Journal of the Australian Mathematical Society. 39 (1): 1–20. doi:10.1017/S1446788700022126 . ISSN 0263-6115.
- ^ a b Hanson, Morgan A. (1999). "Invexity and the Kuhn–Tucker Theorem". Journal of Mathematical Analysis and Applications. 236 (2): 594–604. doi:10.1006/jmaa.1999.6484 . ISSN 0022-247X.
- ^ Hanson, M. A.; Mond, B. (1987). "Necessary and sufficient conditions in constrained optimization". Mathematical Programming. 37 (1): 51–58. doi:10.1007/BF02591683. ISSN 1436-4646. S2CID 206818360.
- ^ Abdulaleem, Najeeb (2019). "E-invexity and generalized E-invexity in E-differentiable multiobjective programming". ITM Web of Conferences. 24 (1) 01002. doi:10.1051/itmconf/20192401002 .
- ^ Abdulaleem, Najeeb (2023). "Optimality and duality for $ E $-differentiable multiobjective programming problems involving $ E $-type I functions". Journal of Industrial and Management Optimization. 19 (2): 1513. doi:10.3934/jimo.2022004 . ISSN 1547-5816.
- ^ Rueda, Norma G; Hanson, Morgan A (1988年03月01日). "Optimality criteria in mathematical programming involving generalized invexity" . Journal of Mathematical Analysis and Applications. 130 (2): 375–385. doi:10.1016/0022-247X(88)90313-7. ISSN 0022-247X.
Further reading
[edit ]- S. K. Mishra and G. Giorgi, Invexity and optimization, Nonconvex Optimization and Its Applications, Vol. 88, Springer-Verlag, Berlin, 2008.
- S. K. Mishra, S.-Y. Wang and K. K. Lai, Generalized Convexity and Vector Optimization, Springer, New York, 2009.