Jump to content
Wikipedia The Free Encyclopedia

Hidden linear function problem

From Wikipedia, the free encyclopedia
Search problem in quantum mechanics

The hidden linear function problem, is a search problem that generalizes the Bernstein–Vazirani problem.[1] In the Bernstein–Vazirani problem, the hidden function is implicitly specified in an oracle; while in the 2D hidden linear function problem (2D HLF), the hidden function is explicitly specified by a matrix and a binary vector. 2D HLF can be solved exactly by a constant-depth quantum circuit restricted to a 2-dimensional grid of qubits using bounded fan-in gates but can't be solved by any sub-exponential size, constant-depth classical circuit using unbounded fan-in AND, OR, and NOT gates.[2] While Bernstein–Vazirani's problem was designed to prove an oracle separation between complexity classes BQP and BPP, 2D HLF was designed to prove an explicit separation between the circuit classes Q N C 0 {\displaystyle QNC^{0}} {\displaystyle QNC^{0}} and N C 0 {\displaystyle NC^{0}} {\displaystyle NC^{0}} ( Q N C 0 N C 0 {\displaystyle QNC^{0}\nsubseteq NC^{0}} {\displaystyle QNC^{0}\nsubseteq NC^{0}}).[1]

2D HLF problem statement

[edit ]

Given A F 2 n × n {\displaystyle A\in \mathbb {F} _{2}^{n\times n}} {\displaystyle A\in \mathbb {F} _{2}^{n\times n}}(an upper- triangular binary matrix of size n × n {\displaystyle n\times n} {\displaystyle n\times n}) and b F 2 n {\displaystyle b\in \mathbb {F} _{2}^{n}} {\displaystyle b\in \mathbb {F} _{2}^{n}} (a binary vector of length n {\displaystyle n} {\displaystyle n}),

define a function q : F 2 n Z 4 {\displaystyle q:\mathbb {F} _{2}^{n}\to \mathbb {Z} _{4}} {\displaystyle q:\mathbb {F} _{2}^{n}\to \mathbb {Z} _{4}}:

q ( x ) = ( 2 x T A x + b T x ) mod 4 = ( 2 i , j A i , j x i x j + i b i x i ) mod 4 , {\displaystyle q(x)=(2x^{T}Ax+b^{T}x){\bmod {4}}=\left(2\sum _{i,j}A_{i,j}x_{i}x_{j}+\sum _{i}b_{i}x_{i}\right){\bmod {4}},} {\displaystyle q(x)=(2x^{T}Ax+b^{T}x){\bmod {4}}=\left(2\sum _{i,j}A_{i,j}x_{i}x_{j}+\sum _{i}b_{i}x_{i}\right){\bmod {4}},}

and

L q = { x F 2 n : q ( x y ) = ( q ( x ) + q ( y ) ) mod 4     y F 2 n } . {\displaystyle {\mathcal {L}}_{q}={\Big \{}x\in \mathbb {F} _{2}^{n}:q(x\oplus y)=(q(x)+q(y)){\bmod {4}}~~\forall y\in \mathbb {F} _{2}^{n}{\Big \}}.} {\displaystyle {\mathcal {L}}_{q}={\Big \{}x\in \mathbb {F} _{2}^{n}:q(x\oplus y)=(q(x)+q(y)){\bmod {4}}~~\forall y\in \mathbb {F} _{2}^{n}{\Big \}}.}

There exists a z F 2 n {\displaystyle z\in \mathbb {F} _{2}^{n}} {\displaystyle z\in \mathbb {F} _{2}^{n}} such that

q ( x ) = 2 z T x     x L q . {\displaystyle q(x)=2z^{T}x~~\forall x\in {\mathcal {L}}_{q}.} {\displaystyle q(x)=2z^{T}x~~\forall x\in {\mathcal {L}}_{q}.}

Find z {\displaystyle z} {\displaystyle z}.[1]

2D HLF algorithm

[edit ]

With 3 registers; the first holding A {\displaystyle A} {\displaystyle A}, the second containing b {\displaystyle b} {\displaystyle b} and the third carrying an n {\displaystyle n} {\displaystyle n}-qubit state, the circuit has controlled gates which implement U q = 1 < i < j < n C Z i j A i j j = 1 n S j b j {\displaystyle U_{q}=\prod _{1<i<j<n}CZ_{ij}^{A_{ij}}\cdot \bigotimes _{j=1}^{n}S_{j}^{b_{j}}} {\displaystyle U_{q}=\prod _{1<i<j<n}CZ_{ij}^{A_{ij}}\cdot \bigotimes _{j=1}^{n}S_{j}^{b_{j}}} from the first two registers to the third.

This problem can be solved by a quantum circuit, H n U q H n 0 n {\displaystyle H^{\otimes n}U_{q}H^{\otimes n}\mid 0^{n}\rangle } {\displaystyle H^{\otimes n}U_{q}H^{\otimes n}\mid 0^{n}\rangle }, where H is the Hadamard gate, S is the S gate and CZ is CZ gate. It is solved by this circuit because with p ( z ) = | z | H n U q H n | 0 n | 2 {\displaystyle p(z)=\left|\langle z|H^{\otimes n}U_{q}H^{\otimes n}|0^{n}\rangle \right|^{2}} {\displaystyle p(z)=\left|\langle z|H^{\otimes n}U_{q}H^{\otimes n}|0^{n}\rangle \right|^{2}}, p ( z ) > 0 {\displaystyle p(z)>0} {\displaystyle p(z)>0} iff z {\displaystyle z} {\displaystyle z} is a solution.[1]

References

[edit ]
  1. ^ a b c d Bravyi, Sergey; Gosset, David; Robert, König (2018年10月19日). "Quantum advantage with shallow circuits". Science . 362 (6412): 308–311. arXiv:1704.00690 . Bibcode:2018Sci...362..308B. doi:10.1126/science.aar3106. PMID 30337404. S2CID 16308940.
  2. ^ Watts, Adam Bene; Kothari, Robin; Schaeffer, Luke; Tal, Avishay (June 2019). "Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuits". Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. Vol. 362. Association for Computing Machinery. pp. 515–526. arXiv:1906.08890 . doi:10.1145/3313276.3316404. ISBN 9781450367059. S2CID 195259496.
[edit ]
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming

AltStyle によって変換されたページ (->オリジナル) /