Jump to content
Wikipedia The Free Encyclopedia

CSS code

From Wikipedia, the free encyclopedia
Class of quantum error correcting codes
For the document presentation language, see CSS.

In quantum error correction, Calderbank–Shor–Steane (CSS) codes, named after their inventors, Robert Calderbank, Peter Shor [1] and Andrew Steane,[2] are a special type of stabilizer code constructed from classical codes with some special properties. Examples of CSS codes include the Steane code, the toric code, and more general surface codes.

Construction

[edit ]

Let C 1 {\displaystyle C_{1}} {\displaystyle C_{1}} and C 2 {\displaystyle C_{2}} {\displaystyle C_{2}} be two (classical) [ n , k 1 ] {\displaystyle [n,k_{1}]} {\displaystyle [n,k_{1}]}, [ n , k 2 ] {\displaystyle [n,k_{2}]} {\displaystyle [n,k_{2}]} codes such, that C 2 C 1 {\displaystyle C_{2}\subset C_{1}} {\displaystyle C_{2}\subset C_{1}} and C 1 , C 2 {\displaystyle C_{1},C_{2}^{\perp }} {\displaystyle C_{1},C_{2}^{\perp }} both have minimal distance 2 t + 1 {\displaystyle \geq 2t+1} {\displaystyle \geq 2t+1}, where C 2 {\displaystyle C_{2}^{\perp }} {\displaystyle C_{2}^{\perp }} is the code dual to C 2 {\displaystyle C_{2}} {\displaystyle C_{2}}. Then define CSS ( C 1 , C 2 ) {\displaystyle {\text{CSS}}(C_{1},C_{2})} {\displaystyle {\text{CSS}}(C_{1},C_{2})}, the CSS code of C 1 {\displaystyle C_{1}} {\displaystyle C_{1}} over C 2 {\displaystyle C_{2}} {\displaystyle C_{2}} as an [ n , k 1 k 2 , d ] {\displaystyle [n,k_{1}-k_{2},d]} {\displaystyle [n,k_{1}-k_{2},d]} code, with d 2 t + 1 {\displaystyle d\geq 2t+1} {\displaystyle d\geq 2t+1} as follows:

Define for x C 1 : | x + C 2 := {\displaystyle x\in C_{1}:{|}x+C_{2}\rangle :=} {\displaystyle x\in C_{1}:{|}x+C_{2}\rangle :=} 1 / | C 2 | {\displaystyle 1/{\sqrt {{|}C_{2}{|}}}} {\displaystyle 1/{\sqrt {{|}C_{2}{|}}}} y C 2 | x + y {\displaystyle \sum _{y\in C_{2}}{|}x+y\rangle } {\displaystyle \sum _{y\in C_{2}}{|}x+y\rangle }, where + {\displaystyle +} {\displaystyle +} is bitwise addition modulo 2. Then CSS ( C 1 , C 2 ) {\displaystyle {\text{CSS}}(C_{1},C_{2})} {\displaystyle {\text{CSS}}(C_{1},C_{2})} is defined as { | x + C 2 x C 1 } {\displaystyle \{{|}x+C_{2}\rangle \mid x\in C_{1}\}} {\displaystyle \{{|}x+C_{2}\rangle \mid x\in C_{1}\}}.

References

[edit ]
  1. ^ Robert Calderbank and Peter Shor (1996). "Good quantum error-correcting codes exist". Physical Review A. 54 (2): 1098–1105. arXiv:quant-ph/9512032 . Bibcode:1996PhRvA..54.1098C. doi:10.1103/PhysRevA.54.1098. PMID 9913578. S2CID 11524969.
  2. ^ Steane, Andrew (1996). "Multiple-Particle Interference and Quantum Error Correction". Proc. R. Soc. Lond. A. 452 (1954): 2551–2577. arXiv:quant-ph/9601029 . Bibcode:1996RSPSA.452.2551S. doi:10.1098/rspa.1996.0136. S2CID 8246615.

Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (2nd ed.). Cambridge: Cambridge University Press. ISBN 978-1-107-00217-3. OCLC 844974180.

[edit ]
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Stub icon

This quantum mechanics-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /