Jump to content
Wikipedia The Free Encyclopedia

Gingerbreadman map

From Wikipedia, the free encyclopedia
Chaotic map
Gingerbreadman map for subset Q 2 , [ 10..10 , 10..10 ] {\displaystyle Q^{2},[-10..10,-10..10]} {\displaystyle Q^{2},[-10..10,-10..10]}: the color of each point is related to the relative orbit period. To view the gingerbread man, you must rotate the image 135 degrees clockwise.

In dynamical systems theory, the Gingerbreadman map is a chaotic two-dimensional map. It is given by the piecewise linear transformation:[1]

{ x n + 1 = 1 y n + | x n | y n + 1 = x n {\displaystyle {\begin{cases}x_{n+1}=1-y_{n}+|x_{n}|\\y_{n+1}=x_{n}\end{cases}}} {\displaystyle {\begin{cases}x_{n+1}=1-y_{n}+|x_{n}|\\y_{n+1}=x_{n}\end{cases}}}
A crude Gingerbreadman map made using the turtle library in python.

See also

[edit ]

References

[edit ]
  1. ^ Devaney, Robert L. (1988), "Fractal patterns arising in chaotic dynamical systems", in Peitgen, Heinz-Otto; Saupe, Dietmar (eds.), The Science of Fractal Images, Springer-Verlag, pp. 137–168, doi:10.1007/978-1-4612-3784-6_3 . See in particular Fig. 3.3.
[edit ]
Concepts
Core
Theorems
Theoretical
branches
Chaotic
maps (list)
Discrete
Continuous
Physical
systems
Chaos
theorists
Related
articles


Stub icon

This fractal–related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /