Jump to content
Wikipedia The Free Encyclopedia

G-module

From Wikipedia, the free encyclopedia
Algebraic structure
The torus can be made an abelian group isomorphic to the product of the circle group. This abelian group is a Klein four-group-module, where the group acts by reflection in each of the coordinate directions (here depicted by red and blue arrows intersecting at the identity element).

In mathematics, given a group G {\displaystyle G} {\displaystyle G}, a G-module is an abelian group M {\displaystyle M} {\displaystyle M} on which G {\displaystyle G} {\displaystyle G} acts compatibly with the abelian group structure on M {\displaystyle M} {\displaystyle M}. This widely applicable notion generalizes that of a representation of G. Group (co)homology provides an important set of tools for studying general G {\displaystyle G} {\displaystyle G}-modules.

The term G-module is also used for the more general notion of an R-module on which G {\displaystyle G} {\displaystyle G} acts linearly (i.e. as a group of R {\displaystyle R} {\displaystyle R}-module automorphisms).

Definition and basics

[edit ]

Let G {\displaystyle G} {\displaystyle G} be a group. A left G {\displaystyle G} {\displaystyle G}-module consists of[1] an abelian group M {\displaystyle M} {\displaystyle M} together with a left group action ρ : G × M M {\displaystyle \rho :G\times M\to M} {\displaystyle \rho :G\times M\to M} such that

g ( a 1 + a 2 ) = g a 1 + g a 2 {\displaystyle g\cdot (a_{1}+a_{2})=g\cdot a_{1}+g\cdot a_{2}} {\displaystyle g\cdot (a_{1}+a_{2})=g\cdot a_{1}+g\cdot a_{2}}

for all a 1 {\displaystyle a_{1}} {\displaystyle a_{1}} and a 2 {\displaystyle a_{2}} {\displaystyle a_{2}} in M {\displaystyle M} {\displaystyle M} and all g {\displaystyle g} {\displaystyle g} in G {\displaystyle G} {\displaystyle G}, where g a {\displaystyle g\cdot a} {\displaystyle g\cdot a} denotes ρ ( g , a ) {\displaystyle \rho (g,a)} {\displaystyle \rho (g,a)}. A right G {\displaystyle G} {\displaystyle G}-module is defined similarly. Given a left G {\displaystyle G} {\displaystyle G}-module M {\displaystyle M} {\displaystyle M}, it can be turned into a right G {\displaystyle G} {\displaystyle G}-module by defining a g = g 1 a {\displaystyle a\cdot g=g^{-1}\cdot a} {\displaystyle a\cdot g=g^{-1}\cdot a}.

A function f : M N {\displaystyle f:M\rightarrow N} {\displaystyle f:M\rightarrow N} is called a morphism of G {\displaystyle G} {\displaystyle G}-modules (or a G {\displaystyle G} {\displaystyle G}-linear map, or a G {\displaystyle G} {\displaystyle G}-homomorphism) if f {\displaystyle f} {\displaystyle f} is both a group homomorphism and G {\displaystyle G} {\displaystyle G}-equivariant.

The collection of left (respectively right) G {\displaystyle G} {\displaystyle G}-modules and their morphisms form an abelian category G -Mod {\displaystyle G{\textbf {-Mod}}} {\displaystyle G{\textbf {-Mod}}} (resp. Mod- G {\displaystyle {\textbf {Mod-}}G} {\displaystyle {\textbf {Mod-}}G}). The category G -Mod {\displaystyle G{\text{-Mod}}} {\displaystyle G{\text{-Mod}}} (resp. Mod- G {\displaystyle {\text{Mod-}}G} {\displaystyle {\text{Mod-}}G}) can be identified with the category of left (resp. right) Z G {\displaystyle \mathbb {Z} G} {\displaystyle \mathbb {Z} G}-modules, i.e. with the modules over the group ring Z [ G ] {\displaystyle \mathbb {Z} [G]} {\displaystyle \mathbb {Z} [G]}.

A submodule of a G {\displaystyle G} {\displaystyle G}-module M {\displaystyle M} {\displaystyle M} is a subgroup A M {\displaystyle A\subseteq M} {\displaystyle A\subseteq M} that is stable under the action of G {\displaystyle G} {\displaystyle G}, i.e. g a A {\displaystyle g\cdot a\in A} {\displaystyle g\cdot a\in A} for all g G {\displaystyle g\in G} {\displaystyle g\in G} and a A {\displaystyle a\in A} {\displaystyle a\in A}. Given a submodule A {\displaystyle A} {\displaystyle A} of M {\displaystyle M} {\displaystyle M}, the quotient module M / A {\displaystyle M/A} {\displaystyle M/A} is the quotient group with action g ( m + A ) = g m + A {\displaystyle g\cdot (m+A)=g\cdot m+A} {\displaystyle g\cdot (m+A)=g\cdot m+A}.

Examples

[edit ]
  • Given a group G {\displaystyle G} {\displaystyle G}, the abelian group Z {\displaystyle \mathbb {Z} } {\displaystyle \mathbb {Z} } is a G {\displaystyle G} {\displaystyle G}-module with the trivial action g a = a {\displaystyle g\cdot a=a} {\displaystyle g\cdot a=a}.
  • Let M {\displaystyle M} {\displaystyle M} be the set of binary quadratic forms f ( x , y ) = a x 2 + 2 b x y + c y 2 {\displaystyle f(x,y)=ax^{2}+2bxy+cy^{2}} {\displaystyle f(x,y)=ax^{2}+2bxy+cy^{2}} with a , b , c {\displaystyle a,b,c} {\displaystyle a,b,c} integers, and let G = SL ( 2 , Z ) {\displaystyle G={\text{SL}}(2,\mathbb {Z} )} {\displaystyle G={\text{SL}}(2,\mathbb {Z} )} (the ×ばつ2 special linear group over Z {\displaystyle \mathbb {Z} } {\displaystyle \mathbb {Z} }). Define
( g f ) ( x , y ) = f ( ( x , y ) g t ) = f ( ( x , y ) [ α γ β δ ] ) = f ( α x + β y , γ x + δ y ) , {\displaystyle (g\cdot f)(x,y)=f((x,y)g^{t})=f\left((x,y)\cdot {\begin{bmatrix}\alpha &\gamma \\\beta &\delta \end{bmatrix}}\right)=f(\alpha x+\beta y,\gamma x+\delta y),} {\displaystyle (g\cdot f)(x,y)=f((x,y)g^{t})=f\left((x,y)\cdot {\begin{bmatrix}\alpha &\gamma \\\beta &\delta \end{bmatrix}}\right)=f(\alpha x+\beta y,\gamma x+\delta y),}
where
g = [ α β γ δ ] {\displaystyle g={\begin{bmatrix}\alpha &\beta \\\gamma &\delta \end{bmatrix}}} {\displaystyle g={\begin{bmatrix}\alpha &\beta \\\gamma &\delta \end{bmatrix}}}
and ( x , y ) g {\displaystyle (x,y)g} {\displaystyle (x,y)g} is matrix multiplication. Then M {\displaystyle M} {\displaystyle M} is a G {\displaystyle G} {\displaystyle G}-module studied by Gauss.[2] Indeed, we have
g ( h ( f ( x , y ) ) ) = g f ( ( x , y ) h t ) = f ( ( x , y ) h t g t ) = f ( ( x , y ) ( g h ) t ) = ( g h ) f ( x , y ) . {\displaystyle g(h(f(x,y)))=gf((x,y)h^{t})=f((x,y)h^{t}g^{t})=f((x,y)(gh)^{t})=(gh)f(x,y).} {\displaystyle g(h(f(x,y)))=gf((x,y)h^{t})=f((x,y)h^{t}g^{t})=f((x,y)(gh)^{t})=(gh)f(x,y).}
  • If V {\displaystyle V} {\displaystyle V} is a representation of G {\displaystyle G} {\displaystyle G} over a field K {\displaystyle K} {\displaystyle K}, then V {\displaystyle V} {\displaystyle V} is a G {\displaystyle G} {\displaystyle G}-module (it is an abelian group under addition).

Topological groups

[edit ]

If G {\displaystyle G} {\displaystyle G} is a topological group and M {\displaystyle M} {\displaystyle M} is an abelian topological group, then a topological G-module is a G {\displaystyle G} {\displaystyle G}-module where the action map G × M M {\displaystyle G\times M\rightarrow M} {\displaystyle G\times M\rightarrow M} is continuous (where the product topology is taken on G × M {\displaystyle G\times M} {\displaystyle G\times M}).[3]

In other words, a topological G {\displaystyle G} {\displaystyle G}-module is an abelian topological group M {\displaystyle M} {\displaystyle M} together with a continuous map G × M M {\displaystyle G\times M\rightarrow M} {\displaystyle G\times M\rightarrow M} satisfying the usual relations g ( a + a ) = g a + g a {\displaystyle g(a+a')=ga+ga'} {\displaystyle g(a+a')=ga+ga'}, ( g g ) a = g ( g a ) {\displaystyle (gg')a=g(g'a)} {\displaystyle (gg')a=g(g'a)}, and 1 a = a {\displaystyle 1a=a} {\displaystyle 1a=a}.

Notes

[edit ]
  1. ^ Curtis, Charles W.; Reiner, Irving (1988) [1962]. Representation Theory of Finite Groups and Associative Algebras . John Wiley & Sons. ISBN 978-0-470-18975-7.
  2. ^ Kim, Myung-Hwan (1999), Integral Quadratic Forms and Lattices: Proceedings of the International Conference on Integral Quadratic Forms and Lattices, June 15–19, 1998, Seoul National University, Korea, American Mathematical Soc.
  3. ^ D. Wigner (1973). "Algebraic cohomology of topological groups". Trans. Amer. Math. Soc. 178: 83–93. doi:10.1090/s0002-9947-1973-0338132-7 .

References

[edit ]

AltStyle によって変換されたページ (->オリジナル) /