G-module
In mathematics, given a group {\displaystyle G}, a G-module is an abelian group {\displaystyle M} on which {\displaystyle G} acts compatibly with the abelian group structure on {\displaystyle M}. This widely applicable notion generalizes that of a representation of G. Group (co)homology provides an important set of tools for studying general {\displaystyle G}-modules.
The term G-module is also used for the more general notion of an R-module on which {\displaystyle G} acts linearly (i.e. as a group of {\displaystyle R}-module automorphisms).
Definition and basics
[edit ]Let {\displaystyle G} be a group. A left {\displaystyle G}-module consists of[1] an abelian group {\displaystyle M} together with a left group action {\displaystyle \rho :G\times M\to M} such that
- {\displaystyle g\cdot (a_{1}+a_{2})=g\cdot a_{1}+g\cdot a_{2}}
for all {\displaystyle a_{1}} and {\displaystyle a_{2}} in {\displaystyle M} and all {\displaystyle g} in {\displaystyle G}, where {\displaystyle g\cdot a} denotes {\displaystyle \rho (g,a)}. A right {\displaystyle G}-module is defined similarly. Given a left {\displaystyle G}-module {\displaystyle M}, it can be turned into a right {\displaystyle G}-module by defining {\displaystyle a\cdot g=g^{-1}\cdot a}.
A function {\displaystyle f:M\rightarrow N} is called a morphism of {\displaystyle G}-modules (or a {\displaystyle G}-linear map, or a {\displaystyle G}-homomorphism) if {\displaystyle f} is both a group homomorphism and {\displaystyle G}-equivariant.
The collection of left (respectively right) {\displaystyle G}-modules and their morphisms form an abelian category {\displaystyle G{\textbf {-Mod}}} (resp. {\displaystyle {\textbf {Mod-}}G}). The category {\displaystyle G{\text{-Mod}}} (resp. {\displaystyle {\text{Mod-}}G}) can be identified with the category of left (resp. right) {\displaystyle \mathbb {Z} G}-modules, i.e. with the modules over the group ring {\displaystyle \mathbb {Z} [G]}.
A submodule of a {\displaystyle G}-module {\displaystyle M} is a subgroup {\displaystyle A\subseteq M} that is stable under the action of {\displaystyle G}, i.e. {\displaystyle g\cdot a\in A} for all {\displaystyle g\in G} and {\displaystyle a\in A}. Given a submodule {\displaystyle A} of {\displaystyle M}, the quotient module {\displaystyle M/A} is the quotient group with action {\displaystyle g\cdot (m+A)=g\cdot m+A}.
Examples
[edit ]- Given a group {\displaystyle G}, the abelian group {\displaystyle \mathbb {Z} } is a {\displaystyle G}-module with the trivial action {\displaystyle g\cdot a=a}.
- Let {\displaystyle M} be the set of binary quadratic forms {\displaystyle f(x,y)=ax^{2}+2bxy+cy^{2}} with {\displaystyle a,b,c} integers, and let {\displaystyle G={\text{SL}}(2,\mathbb {Z} )} (the ×ばつ2 special linear group over {\displaystyle \mathbb {Z} }). Define
- {\displaystyle (g\cdot f)(x,y)=f((x,y)g^{t})=f\left((x,y)\cdot {\begin{bmatrix}\alpha &\gamma \\\beta &\delta \end{bmatrix}}\right)=f(\alpha x+\beta y,\gamma x+\delta y),}
- where
- {\displaystyle g={\begin{bmatrix}\alpha &\beta \\\gamma &\delta \end{bmatrix}}}
- and {\displaystyle (x,y)g} is matrix multiplication. Then {\displaystyle M} is a {\displaystyle G}-module studied by Gauss.[2] Indeed, we have
- {\displaystyle g(h(f(x,y)))=gf((x,y)h^{t})=f((x,y)h^{t}g^{t})=f((x,y)(gh)^{t})=(gh)f(x,y).}
- If {\displaystyle V} is a representation of {\displaystyle G} over a field {\displaystyle K}, then {\displaystyle V} is a {\displaystyle G}-module (it is an abelian group under addition).
Topological groups
[edit ]If {\displaystyle G} is a topological group and {\displaystyle M} is an abelian topological group, then a topological G-module is a {\displaystyle G}-module where the action map {\displaystyle G\times M\rightarrow M} is continuous (where the product topology is taken on {\displaystyle G\times M}).[3]
In other words, a topological {\displaystyle G}-module is an abelian topological group {\displaystyle M} together with a continuous map {\displaystyle G\times M\rightarrow M} satisfying the usual relations {\displaystyle g(a+a')=ga+ga'}, {\displaystyle (gg')a=g(g'a)}, and {\displaystyle 1a=a}.
Notes
[edit ]- ^ Curtis, Charles W.; Reiner, Irving (1988) [1962]. Representation Theory of Finite Groups and Associative Algebras . John Wiley & Sons. ISBN 978-0-470-18975-7.
- ^ Kim, Myung-Hwan (1999), Integral Quadratic Forms and Lattices: Proceedings of the International Conference on Integral Quadratic Forms and Lattices, June 15–19, 1998, Seoul National University, Korea, American Mathematical Soc.
- ^ D. Wigner (1973). "Algebraic cohomology of topological groups". Trans. Amer. Math. Soc. 178: 83–93. doi:10.1090/s0002-9947-1973-0338132-7 .
References
[edit ]- Chapter 6 of Weibel, Charles A. (1994). An introduction to homological algebra. Cambridge Studies in Advanced Mathematics. Vol. 38. Cambridge University Press. ISBN 978-0-521-55987-4. MR 1269324. OCLC 36131259.