Fabius function
In mathematics, the Fabius function is an example of an infinitely differentiable function that is nowhere analytic, found by Jaap Fabius (1966).
This function satisfies the initial condition {\displaystyle f(0)=0}, the symmetry condition {\displaystyle f(1-x)=1-f(x)} for {\displaystyle 0\leq x\leq 1,} and the functional differential equation
- {\displaystyle f'(x)=2f(2x)}
for {\displaystyle 0\leq x\leq 1/2.} It follows that {\displaystyle f(x)} is monotone increasing for {\displaystyle 0\leq x\leq 1,} with {\displaystyle f(1/2)=1/2} and {\displaystyle f(1)=1} and {\displaystyle f'(1-x)=f'(x)} and {\displaystyle f'(x)+f'({\tfrac {1}{2}}-x)=2.}
It was also written down as the Fourier transform of
- {\displaystyle {\hat {f}}(z)=\prod _{m=1}^{\infty }\left(\cos {\frac {\pi z}{2^{m}}}\right)^{m}}
by Børge Jessen and Aurel Wintner (1935).
The Fabius function is defined on the unit interval, and is given by the cumulative distribution function of
- {\displaystyle \sum _{n=1}^{\infty }2^{-n}\xi _{n},}
where the ξn are independent uniformly distributed random variables on the unit interval. That distribution has an expectation of {\displaystyle {\tfrac {1}{2}}} and a variance of {\displaystyle {\tfrac {1}{36}}}.
There is a unique extension of f to the real numbers that satisfies the same differential equation for all x. This extension can be defined by f (x) = 0 for x ≤ 0, f (x + 1) = 1 − f (x) for 0 ≤ x ≤ 1, and f (x + 2r) = −f (x) for 0 ≤ x ≤ 2r with r a positive integer. The sequence of intervals within which this function is positive or negative follows the same pattern as the Thue–Morse sequence.
The Rvachëv up function[1] is closely related: {\displaystyle u(t)={\begin{cases}F(t+1),\quad |t|<1\0,円\quad |t|\geq 1\end{cases}}} which fulfills the Delay differential equation [2] {\displaystyle {\frac {d}{dt}}u(t)=2u(2t+1)-2u(2t-1).} (see Another example).
Values
[edit ]The Fabius function is constant zero for all non-positive arguments, and assumes rational values at positive dyadic rational arguments. For example:[3] [4]
- {\displaystyle f(1)=1}
- {\displaystyle f({\tfrac {1}{2}})={\tfrac {1}{2}}}
- {\displaystyle f({\tfrac {1}{4}})={\tfrac {5}{72}}}
- {\displaystyle f({\tfrac {1}{8}})={\tfrac {1}{288}}}
- {\displaystyle f({\tfrac {1}{16}})={\tfrac {143}{2073600}}}
- {\displaystyle f({\tfrac {1}{32}})={\tfrac {19}{33177600}}}
- {\displaystyle f({\tfrac {1}{64}})={\tfrac {1153}{561842749440}}}
- {\displaystyle f({\tfrac {1}{128}})={\tfrac {583}{179789679820800}}}
with the numerators listed in OEIS: A272755 and denominators in OEIS: A272757 .
Asymptotic
[edit ]{\displaystyle {\begin{aligned}\log f(x)&=-{\frac {\log ^{2}x}{2\log 2}}+{\frac {\log x\cdot \log(-\log x)}{\log 2}}-\left({\frac {1}{2}}+{\frac {1+\log \log 2}{\log 2}}\right)\log x-{\frac {\log ^{2}(-\log x)}{2\log 2}}+{\frac {\log \log 2\cdot \log(-\log x)}{\log 2}}\\&+\left({\frac {6\gamma ^{2}+12\gamma _{1}-\pi ^{2}-6\log ^{2}\log 2}{12\log 2}}-{\frac {7\log 2}{12}}-{\frac {\log \pi }{2}}\right)+{\frac {\log ^{2}(-\log x)}{2\log 2\cdot \log x}}-{\frac {\log \log 2\cdot \log(-\log x)}{\log 2\cdot \log x}}+O\!\left({\frac {1}{\log x}}\right)\end{aligned}}}
for {\displaystyle x\to 0^{+},} where {\displaystyle \gamma } is Euler's constant, and {\displaystyle \gamma _{1}} is the Stieltjes constant. Equivalently,
{\displaystyle \log f\!\left(2^{-n}\right)=-{\frac {n^{2}\log 2}{2}}-n\log n+\left(1+{\frac {\log 2}{2}}\right)n-{\frac {\log ^{2}n}{2\log 2}}+\left({\frac {6\gamma ^{2}+12\gamma _{1}-\pi ^{2}}{12\log 2}}-{\frac {7\log 2}{12}}-{\frac {\log \pi }{2}}\right)-{\frac {\log ^{2}n}{2n\log ^{2}2}}+O\!\left({\frac {1}{n}}\right)}
for {\displaystyle n\to \infty .}
References
[edit ]- ^ "A288163 - Oeis".
- ^ Juan Arias de Reyna (2017). "Arithmetic of the Fabius function". arXiv:1702.06487 [math.NT].
- ^ Sloane, N. J. A. (ed.). "Sequence A272755 (Numerators of the Fabius function F(1/2^n).)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A272757 (Denominators of the Fabius function F(1/2^n).)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
- Fabius, J. (1966), "A probabilistic example of a nowhere analytic C ∞-function", Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 5 (2): 173–174, doi:10.1007/bf00536652, MR 0197656, S2CID 122126180
- Jessen, Børge; Wintner, Aurel (1935), "Distribution functions and the Riemann zeta function", Trans. Amer. Math. Soc., 38: 48–88, doi:10.1090/S0002-9947-1935-1501802-5 , MR 1501802
- Dimitrov, Youri (2006). Polynomially-divided solutions of bipartite self-differential functional equations (Thesis).
- Arias de Reyna, Juan (2017). "Arithmetic of the Fabius function". arXiv:1702.06487 [math.NT].
- Arias de Reyna, Juan (2017). "An infinitely differentiable function with compact support: Definition and properties". arXiv:1702.05442 [math.CA]. (an English translation of the author's paper published in Spanish in 1982)
- Alkauskas, Giedrius (2001), "Dirichlet series associated with Thue-Morse sequence", preprint.
- Rvachev, V. L., Rvachev, V. A., "Non-classical methods of the approximation theory in boundary value problems", Naukova Dumka, Kiev (1979) (in Russian).
This mathematical analysis–related article is a stub. You can help Wikipedia by expanding it.