Jump to content
Wikipedia The Free Encyclopedia

Exponential-logarithmic distribution

From Wikipedia, the free encyclopedia
Family of lifetime distributions with decreasing failure rate
Exponential-Logarithmic distribution (EL)
Probability density function
Probability density function
Parameters p ( 0 , 1 ) {\displaystyle p\in (0,1)} {\displaystyle p\in (0,1)}
β > 0 {\displaystyle \beta >0} {\displaystyle \beta >0}
Support x [ 0 , ) {\displaystyle x\in [0,\infty )} {\displaystyle x\in [0,\infty )}
PDF 1 ln p × β ( 1 p ) e β x 1 ( 1 p ) e β x {\displaystyle {\frac {1}{-\ln p}}\times {\frac {\beta (1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}}}} {\displaystyle {\frac {1}{-\ln p}}\times {\frac {\beta (1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}}}}
CDF 1 ln ( 1 ( 1 p ) e β x ) ln p {\displaystyle 1-{\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}}} {\displaystyle 1-{\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}}}
Mean polylog ( 2 , 1 p ) β ln p {\displaystyle -{\frac {{\text{polylog}}(2,1-p)}{\beta \ln p}}} {\displaystyle -{\frac {{\text{polylog}}(2,1-p)}{\beta \ln p}}}
Median ln ( 1 + p ) β {\displaystyle {\frac {\ln(1+{\sqrt {p}})}{\beta }}} {\displaystyle {\frac {\ln(1+{\sqrt {p}})}{\beta }}}
Mode 0
Variance 2 polylog ( 3 , 1 p ) β 2 ln p {\displaystyle -{\frac {2{\text{polylog}}(3,1-p)}{\beta ^{2}\ln p}}} {\displaystyle -{\frac {2{\text{polylog}}(3,1-p)}{\beta ^{2}\ln p}}}
polylog 2 ( 2 , 1 p ) β 2 ln 2 p {\displaystyle -{\frac {{\text{polylog}}^{2}(2,1-p)}{\beta ^{2}\ln ^{2}p}}} {\displaystyle -{\frac {{\text{polylog}}^{2}(2,1-p)}{\beta ^{2}\ln ^{2}p}}}
MGF β ( 1 p ) ln p ( β t ) hypergeom 2 , 1 {\displaystyle -{\frac {\beta (1-p)}{\ln p(\beta -t)}}{\text{hypergeom}}_{2,1}} {\displaystyle -{\frac {\beta (1-p)}{\ln p(\beta -t)}}{\text{hypergeom}}_{2,1}}
( [ 1 , β t β ] , [ 2 β t β ] , 1 p ) {\displaystyle ([1,{\frac {\beta -t}{\beta }}],[{\frac {2\beta -t}{\beta }}],1-p)} {\displaystyle ([1,{\frac {\beta -t}{\beta }}],[{\frac {2\beta -t}{\beta }}],1-p)}

In probability theory and statistics, the Exponential-Logarithmic (EL) distribution is a family of lifetime distributions with decreasing failure rate, defined on the interval [0, ∞). This distribution is parameterized by two parameters p ( 0 , 1 ) {\displaystyle p\in (0,1)} {\displaystyle p\in (0,1)} and β > 0 {\displaystyle \beta >0} {\displaystyle \beta >0}.

Introduction

[edit ]

The study of lengths of the lives of organisms, devices, materials, etc., is of major importance in the biological and engineering sciences. In general, the lifetime of a device is expected to exhibit decreasing failure rate (DFR) when its behavior over time is characterized by 'work-hardening' (in engineering terms) or 'immunity' (in biological terms).

The exponential-logarithmic model, together with its various properties, are studied by Tahmasbi and Rezaei (2008).[1] This model is obtained under the concept of population heterogeneity (through the process of compounding).

Properties of the distribution

[edit ]

Distribution

[edit ]

The probability density function (pdf) of the EL distribution is given by Tahmasbi and Rezaei (2008)[1]

f ( x ; p , β ) := ( 1 ln p ) β ( 1 p ) e β x 1 ( 1 p ) e β x {\displaystyle f(x;p,\beta ):=\left({\frac {1}{-\ln p}}\right){\frac {\beta (1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}}}} {\displaystyle f(x;p,\beta ):=\left({\frac {1}{-\ln p}}\right){\frac {\beta (1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}}}}

where p ( 0 , 1 ) {\displaystyle p\in (0,1)} {\displaystyle p\in (0,1)} and β > 0 {\displaystyle \beta >0} {\displaystyle \beta >0}. This function is strictly decreasing in x {\displaystyle x} {\displaystyle x} and tends to zero as x {\displaystyle x\rightarrow \infty } {\displaystyle x\rightarrow \infty }. The EL distribution has its modal value of the density at x=0, given by

β ( 1 p ) p ln p {\displaystyle {\frac {\beta (1-p)}{-p\ln p}}} {\displaystyle {\frac {\beta (1-p)}{-p\ln p}}}

The EL reduces to the exponential distribution with rate parameter β {\displaystyle \beta } {\displaystyle \beta }, as p 1 {\displaystyle p\rightarrow 1} {\displaystyle p\rightarrow 1}.

The cumulative distribution function is given by

F ( x ; p , β ) = 1 ln ( 1 ( 1 p ) e β x ) ln p , {\displaystyle F(x;p,\beta )=1-{\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}},} {\displaystyle F(x;p,\beta )=1-{\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}},}

and hence, the median is given by

x median = ln ( 1 + p ) β {\displaystyle x_{\text{median}}={\frac {\ln(1+{\sqrt {p}})}{\beta }}} {\displaystyle x_{\text{median}}={\frac {\ln(1+{\sqrt {p}})}{\beta }}}.

Moments

[edit ]

The moment generating function of X {\displaystyle X} {\displaystyle X} can be determined from the pdf by direct integration and is given by

M X ( t ) = E ( e t X ) = β ( 1 p ) ln p ( β t ) F 2 , 1 ( [ 1 , β t β ] , [ 2 β t β ] , 1 p ) , {\displaystyle M_{X}(t)=E(e^{tX})=-{\frac {\beta (1-p)}{\ln p(\beta -t)}}F_{2,1}\left(\left[1,{\frac {\beta -t}{\beta }}\right],\left[{\frac {2\beta -t}{\beta }}\right],1-p\right),} {\displaystyle M_{X}(t)=E(e^{tX})=-{\frac {\beta (1-p)}{\ln p(\beta -t)}}F_{2,1}\left(\left[1,{\frac {\beta -t}{\beta }}\right],\left[{\frac {2\beta -t}{\beta }}\right],1-p\right),}

where F 2 , 1 {\displaystyle F_{2,1}} {\displaystyle F_{2,1}} is a hypergeometric function. This function is also known as Barnes's extended hypergeometric function. The definition of F N , D ( n , d , z ) {\displaystyle F_{N,D}({n,d},z)} {\displaystyle F_{N,D}({n,d},z)} is

F N , D ( n , d , z ) := k = 0 z k i = 1 p Γ ( n i + k ) Γ 1 ( n i ) Γ ( k + 1 ) i = 1 q Γ ( d i + k ) Γ 1 ( d i ) {\displaystyle F_{N,D}(n,d,z):=\sum _{k=0}^{\infty }{\frac {z^{k}\prod _{i=1}^{p}\Gamma (n_{i}+k)\Gamma ^{-1}(n_{i})}{\Gamma (k+1)\prod _{i=1}^{q}\Gamma (d_{i}+k)\Gamma ^{-1}(d_{i})}}} {\displaystyle F_{N,D}(n,d,z):=\sum _{k=0}^{\infty }{\frac {z^{k}\prod _{i=1}^{p}\Gamma (n_{i}+k)\Gamma ^{-1}(n_{i})}{\Gamma (k+1)\prod _{i=1}^{q}\Gamma (d_{i}+k)\Gamma ^{-1}(d_{i})}}}

where n = [ n 1 , n 2 , , n N ] {\displaystyle n=[n_{1},n_{2},\dots ,n_{N}]} {\displaystyle n=[n_{1},n_{2},\dots ,n_{N}]} and d = [ d 1 , d 2 , , d D ] {\displaystyle {d}=[d_{1},d_{2},\dots ,d_{D}]} {\displaystyle {d}=[d_{1},d_{2},\dots ,d_{D}]}.

The moments of X {\displaystyle X} {\displaystyle X} can be derived from M X ( t ) {\displaystyle M_{X}(t)} {\displaystyle M_{X}(t)}. For r N {\displaystyle r\in \mathbb {N} } {\displaystyle r\in \mathbb {N} }, the raw moments are given by

E ( X r ; p , β ) = r ! Li r + 1 ( 1 p ) β r ln p , {\displaystyle E(X^{r};p,\beta )=-r!{\frac {\operatorname {Li} _{r+1}(1-p)}{\beta ^{r}\ln p}},} {\displaystyle E(X^{r};p,\beta )=-r!{\frac {\operatorname {Li} _{r+1}(1-p)}{\beta ^{r}\ln p}},}

where Li a ( z ) {\displaystyle \operatorname {Li} _{a}(z)} {\displaystyle \operatorname {Li} _{a}(z)} is the polylogarithm function which is defined as follows:[2]

Li a ( z ) = k = 1 z k k a . {\displaystyle \operatorname {Li} _{a}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{a}}}.} {\displaystyle \operatorname {Li} _{a}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{a}}}.}

Hence the mean and variance of the EL distribution are given, respectively, by

E ( X ) = Li 2 ( 1 p ) β ln p , {\displaystyle E(X)=-{\frac {\operatorname {Li} _{2}(1-p)}{\beta \ln p}},} {\displaystyle E(X)=-{\frac {\operatorname {Li} _{2}(1-p)}{\beta \ln p}},}
Var ( X ) = 2 Li 3 ( 1 p ) β 2 ln p ( Li 2 ( 1 p ) β ln p ) 2 . {\displaystyle \operatorname {Var} (X)=-{\frac {2\operatorname {Li} _{3}(1-p)}{\beta ^{2}\ln p}}-\left({\frac {\operatorname {Li} _{2}(1-p)}{\beta \ln p}}\right)^{2}.} {\displaystyle \operatorname {Var} (X)=-{\frac {2\operatorname {Li} _{3}(1-p)}{\beta ^{2}\ln p}}-\left({\frac {\operatorname {Li} _{2}(1-p)}{\beta \ln p}}\right)^{2}.}

The survival, hazard and mean residual life functions

[edit ]
Hazard function

The survival function (also known as the reliability function) and hazard function (also known as the failure rate function) of the EL distribution are given, respectively, by

s ( x ) = ln ( 1 ( 1 p ) e β x ) ln p , {\displaystyle s(x)={\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}},} {\displaystyle s(x)={\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}},}
h ( x ) = β ( 1 p ) e β x ( 1 ( 1 p ) e β x ) ln ( 1 ( 1 p ) e β x ) . {\displaystyle h(x)={\frac {-\beta (1-p)e^{-\beta x}}{(1-(1-p)e^{-\beta x})\ln(1-(1-p)e^{-\beta x})}}.} {\displaystyle h(x)={\frac {-\beta (1-p)e^{-\beta x}}{(1-(1-p)e^{-\beta x})\ln(1-(1-p)e^{-\beta x})}}.}

The mean residual lifetime of the EL distribution is given by

m ( x 0 ; p , β ) = E ( X x 0 | X x 0 ; β , p ) = Li 2 ( 1 ( 1 p ) e β x 0 ) β ln ( 1 ( 1 p ) e β x 0 ) {\displaystyle m(x_{0};p,\beta )=E(X-x_{0}|X\geq x_{0};\beta ,p)=-{\frac {\operatorname {Li} _{2}(1-(1-p)e^{-\beta x_{0}})}{\beta \ln(1-(1-p)e^{-\beta x_{0}})}}} {\displaystyle m(x_{0};p,\beta )=E(X-x_{0}|X\geq x_{0};\beta ,p)=-{\frac {\operatorname {Li} _{2}(1-(1-p)e^{-\beta x_{0}})}{\beta \ln(1-(1-p)e^{-\beta x_{0}})}}}

where Li 2 {\displaystyle \operatorname {Li} _{2}} {\displaystyle \operatorname {Li} _{2}} is the dilogarithm function

Random number generation

[edit ]

Let U be a random variate from the standard uniform distribution. Then the following transformation of U has the EL distribution with parameters p and β:

X = 1 β ln ( 1 p 1 p U ) . {\displaystyle X={\frac {1}{\beta }}\ln \left({\frac {1-p}{1-p^{U}}}\right).} {\displaystyle X={\frac {1}{\beta }}\ln \left({\frac {1-p}{1-p^{U}}}\right).}

Estimation of the parameters

[edit ]

To estimate the parameters, the EM algorithm is used. This method is discussed by Tahmasbi and Rezaei (2008).[1] The EM iteration is given by

β ( h + 1 ) = n ( i = 1 n x i 1 ( 1 p ( h ) ) e β ( h ) x i ) 1 , {\displaystyle \beta ^{(h+1)}=n\left(\sum _{i=1}^{n}{\frac {x_{i}}{1-(1-p^{(h)})e^{-\beta ^{(h)}x_{i}}}}\right)^{-1},} {\displaystyle \beta ^{(h+1)}=n\left(\sum _{i=1}^{n}{\frac {x_{i}}{1-(1-p^{(h)})e^{-\beta ^{(h)}x_{i}}}}\right)^{-1},}
p ( h + 1 ) = n ( 1 p ( h + 1 ) ) ln ( p ( h + 1 ) ) i = 1 n { 1 ( 1 p ( h ) ) e β ( h ) x i } 1 . {\displaystyle p^{(h+1)}={\frac {-n(1-p^{(h+1)})}{\ln(p^{(h+1)})\sum _{i=1}^{n}\{1-(1-p^{(h)})e^{-\beta ^{(h)}x_{i}}\}^{-1}}}.} {\displaystyle p^{(h+1)}={\frac {-n(1-p^{(h+1)})}{\ln(p^{(h+1)})\sum _{i=1}^{n}\{1-(1-p^{(h)})e^{-\beta ^{(h)}x_{i}}\}^{-1}}}.}
[edit ]

The EL distribution has been generalized to form the Weibull-logarithmic distribution.[3]

If X is defined to be the random variable which is the minimum of N independent realisations from an exponential distribution with rate parameter β, and if N is a realisation from a logarithmic distribution (where the parameter p in the usual parameterisation is replaced by (1 − p)), then X has the exponential-logarithmic distribution in the parameterisation used above.

References

[edit ]
  1. ^ a b c Tahmasbi, R., Rezaei, S., (2008), "A two-parameter lifetime distribution with decreasing failure rate", Computational Statistics and Data Analysis, 52 (8), 3889-3901. doi:10.1016/j.csda.200712002
  2. ^ Lewin, L. (1981) Polylogarithms and Associated Functions, North Holland, Amsterdam.
  3. ^ Ciumara, Roxana; Preda, Vasile (2009) "The Weibull-logarithmic distribution in lifetime analysis and its properties". In: L. Sakalauskas, C. Skiadas and E. K. Zavadskas (Eds.) Applied Stochastic Models and Data Analysis Archived 2011年05月18日 at the Wayback Machine, The XIII International Conference, Selected papers. Vilnius, 2009 ISBN 978-9955-28-463-5
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /