Division polynomials
In mathematics, the division polynomials provide a way to calculate multiples of points on elliptic curves and to study the fields generated by torsion points. They play a central role in the study of counting points on elliptic curves in Schoof's algorithm.
Definition
[edit ]The set of division polynomials is a sequence of polynomials in {\displaystyle \mathbb {Z} [x,y,A,B]} with {\displaystyle x,y,A,B} free variables that is recursively defined by:
- {\displaystyle \psi _{0}=0}
- {\displaystyle \psi _{1}=1}
- {\displaystyle \psi _{2}=2y}
- {\displaystyle \psi _{3}=3x^{4}+6Ax^{2}+12Bx-A^{2}}
- {\displaystyle \psi _{4}=4y(x^{6}+5Ax^{4}+20Bx^{3}-5A^{2}x^{2}-4ABx-8B^{2}-A^{3})}
- {\displaystyle \vdots }
- {\displaystyle \psi _{2m+1}=\psi _{m+2}\psi _{m}^{3}-\psi _{m-1}\psi _{m+1}^{3}{\text{ for }}m\geq 2}
- {\displaystyle \psi _{2m}=\left({\frac {\psi _{m}}{2y}}\right)\cdot (\psi _{m+2}\psi _{m-1}^{2}-\psi _{m-2}\psi _{m+1}^{2}){\text{ for }}m\geq 3}
The polynomial {\displaystyle \psi _{n}} is called the nth division polynomial.
Properties
[edit ]- In practice, one sets {\displaystyle y^{2}=x^{3}+Ax+B}, and then {\displaystyle \psi _{2m+1}\in \mathbb {Z} [x,A,B]} and {\displaystyle \psi _{2m}\in 2y\mathbb {Z} [x,A,B]}.
- The division polynomials form a generic elliptic divisibility sequence over the ring {\displaystyle \mathbb {Q} [x,y,A,B]/(y^{2}-x^{3}-Ax-B)}.
- If an elliptic curve {\displaystyle E} is given in the Weierstrass form {\displaystyle y^{2}=x^{3}+Ax+B} over some field {\displaystyle K}, i.e. {\displaystyle A,B\in K}, one can use these values of {\displaystyle A,B} and consider the division polynomials in the coordinate ring of {\displaystyle E}. The roots of {\displaystyle \psi _{2n+1}} are the {\displaystyle x}-coordinates of the points of {\displaystyle E[2n+1]\setminus \{O\}}, where {\displaystyle E[2n+1]} is the {\displaystyle (2n+1)^{\text{th}}} torsion subgroup of {\displaystyle E}. Similarly, the roots of {\displaystyle \psi _{2n}/y} are the {\displaystyle x}-coordinates of the points of {\displaystyle E[2n]\setminus E[2]}.
- Given a point {\displaystyle P=(x_{P},y_{P})} on the elliptic curve {\displaystyle E:y^{2}=x^{3}+Ax+B} over some field {\displaystyle K}, we can express the coordinates of the nth multiple of {\displaystyle P} in terms of division polynomials:
- {\displaystyle nP=\left({\frac {\phi _{n}(x)}{\psi _{n}^{2}(x)}},{\frac {\omega _{n}(x,y)}{\psi _{n}^{3}(x,y)}}\right)=\left(x-{\frac {\psi _{n-1}\psi _{n+1}}{\psi _{n}^{2}(x)}},{\frac {\psi _{2n}(x,y)}{2\psi _{n}^{4}(x)}}\right)}
- where {\displaystyle \phi _{n}} and {\displaystyle \omega _{n}} are defined by:
- {\displaystyle \phi _{n}=x\psi _{n}^{2}-\psi _{n+1}\psi _{n-1},}
- {\displaystyle \omega _{n}={\frac {\psi _{n+2}\psi _{n-1}^{2}-\psi _{n-2}\psi _{n+1}^{2}}{4y}}.}
Using the relation between {\displaystyle \psi _{2m}} and {\displaystyle \psi _{2m+1}}, along with the equation of the curve, the functions {\displaystyle \psi _{n}^{2}} , {\displaystyle {\frac {\psi _{2n}}{y}},\psi _{2n+1}}, {\displaystyle \phi _{n}} are all in {\displaystyle K[x]}.
Let {\displaystyle p>3} be prime and let {\displaystyle E:y^{2}=x^{3}+Ax+B} be an elliptic curve over the finite field {\displaystyle \mathbb {F} _{p}}, i.e., {\displaystyle A,B\in \mathbb {F} _{p}}. The {\displaystyle \ell }-torsion group of {\displaystyle E} over {\displaystyle {\bar {\mathbb {F} }}_{p}} is isomorphic to {\displaystyle \mathbb {Z} /\ell \times \mathbb {Z} /\ell } if {\displaystyle \ell \neq p}, and to {\displaystyle \mathbb {Z} /\ell } or {\displaystyle \{0\}} if {\displaystyle \ell =p}. Hence the degree of {\displaystyle \psi _{\ell }} is equal to either {\displaystyle {\frac {1}{2}}(l^{2}-1)}, {\displaystyle {\frac {1}{2}}(l-1)}, or 0.
René Schoof observed that working modulo the {\displaystyle \ell }th division polynomial allows one to work with all {\displaystyle \ell }-torsion points simultaneously. This is heavily used in Schoof's algorithm for counting points on elliptic curves.
See also
[edit ]References
[edit ]- A. Enge: Elliptic Curves and their Applications to Cryptography: An Introduction. Kluwer Academic Publishers, Dordrecht, 1999.
- N. Koblitz: A Course in Number Theory and Cryptography, Graduate Texts in Math. No. 114, Springer-Verlag, 1987. Second edition, 1994
- Müller : Die Berechnung der Punktanzahl von elliptischen kurven über endlichen Primkörpern. Master's Thesis. Universität des Saarlandes, Saarbrücken, 1991.
- G. Musiker: Schoof's Algorithm for Counting Points on {\displaystyle E(\mathbb {F} _{q})}. Available at https://www-users.cse.umn.edu/~musiker/schoof.pdf
- Schoof: Elliptic Curves over Finite Fields and the Computation of Square Roots mod p. Math. Comp., 44(170):483–494, 1985. Available at http://www.mat.uniroma2.it/~schoof/ctpts.pdf
- R. Schoof: Counting Points on Elliptic Curves over Finite Fields. J. Theor. Nombres Bordeaux 7:219–254, 1995. Available at http://www.mat.uniroma2.it/~schoof/ctg.pdf
- L. C. Washington: Elliptic Curves: Number Theory and Cryptography. Chapman & Hall/CRC, New York, 2003.
- J. Silverman: The Arithmetic of Elliptic Curves, Springer-Verlag, GTM 106, 1986.