Bowyer–Watson algorithm
In computational geometry, the Bowyer–Watson algorithm is a method for computing the Delaunay triangulation of a finite set of points in any number of dimensions. The algorithm can be also used to obtain a Voronoi diagram of the points, which is the dual graph of the Delaunay triangulation.
Description
[edit ]The Bowyer–Watson algorithm is an incremental algorithm. It works by adding points, one at a time, to a valid Delaunay triangulation of a subset of the desired points. After every insertion, any triangles whose circumcircles contain the new point are deleted, leaving a star-shaped polygonal hole which is then re-triangulated using the new point. By using the connectivity of the triangulation to efficiently locate triangles to remove, the algorithm can take O(N log N) operations to triangulate N points, although special degenerate cases exist where this goes up to O(N2).[1]
-
First step: insert a node in an enclosing "super"-triangle
-
Insert second node
-
Insert third node
-
Insert fourth node
-
Insert fifth (and last) node
-
Remove edges with extremes in the super-triangle
History
[edit ]The algorithm is sometimes known just as the Bowyer Algorithm or the Watson Algorithm. Adrian Bowyer and David Watson devised it independently of each other at the same time, and each published a paper on it in the same issue of The Computer Journal (see below).
Pseudocode
[edit ]The following pseudocode describes a basic implementation of the Bowyer-Watson algorithm. Its time complexity is {\displaystyle O(n^{2})}. Efficiency can be improved in a number of ways. For example, the triangle connectivity can be used to locate the triangles which contain the new point in their circumcircle, without having to check all of the triangles - by doing so we can decrease time complexity to {\displaystyle O(n\log n)}. Pre-computing the circumcircles can save time at the expense of additional memory usage. And if the points are uniformly distributed, sorting them along a space filling Hilbert curve prior to insertion can also speed point location.[2]
functionBowyerWatson(pointList) // pointList is a set of coordinates defining the points to be triangulated triangulation:=emptytrianglemeshdatastructure addsuper-triangletotriangulation// must be large enough to completely contain all the points in pointList foreachpointinpointListdo// add all the points one at a time to the triangulation badTriangles:=emptyset foreachtriangleintriangulationdo// first find all the triangles that are no longer valid due to the insertion ifpointisinsidecircumcircleoftriangle addtriangletobadTriangles polygon:=emptyset foreachtriangleinbadTrianglesdo// find the boundary of the polygonal hole foreachedgeintriangledo ifedgeisnotsharedbyanyothertrianglesinbadTriangles addedgetopolygon foreachtriangleinbadTrianglesdo// remove them from the data structure removetrianglefromtriangulation foreachedgeinpolygondo// re-triangulate the polygonal hole newTri:=formatrianglefromedgetopoint addnewTritotriangulation foreachtriangleintriangulation// done inserting points, now clean up iftrianglecontainsavertexfromoriginalsuper-triangle removetrianglefromtriangulation returntriangulation
References
[edit ]- ^ Rebay, S. Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer-Watson Algorithm. Journal of Computational Physics Volume 106 Issue 1, May 1993, p. 127.
- ^ Liu, Yuanxin, and Jack Snoeyink. "A comparison of five implementations of 3D Delaunay tessellation." Combinatorial and Computational Geometry 52 (2005): 439-458.
Further reading
[edit ]- Bowyer, Adrian (1981). "Computing Dirichlet tessellations". Comput. J. 24 (2): 162–166. doi:10.1093/comjnl/24.2.162 .
- Watson, David F. (1981). "Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes". Comput. J. 24 (2): 167–172. doi:10.1093/comjnl/24.2.167.
- Efficient Triangulation Algorithm Suitable for Terrain Modelling generic explanations with source code examples in several languages.
External links
[edit ]- pyDelaunay2D : A didactic Python implementation of Bowyer–Watson algorithm.
- Bl4ckb0ne/delaunay-triangulation : C++ implementation of Bowyer–Watson algorithm.