Class FeatureAttributionSpec (1.117.0)

FeatureAttributionSpec(
 features: typing.Optional[typing.List[str]] = None,
 default_alert_threshold: typing.Optional[float] = None,
 feature_alert_thresholds: typing.Optional[typing.Dict[str, float]] = None,
 batch_dedicated_resources: typing.Optional[
 google.cloud.aiplatform_v1beta1.types.machine_resources.BatchDedicatedResources
 ] = None,
)

Feature attribution spec.

.. rubric:: Example

feature_attribution_spec=FeatureAttributionSpec( features=["feature1"] default_alert_threshold=0.01, feature_alert_thresholds={"feature1":0.02, "feature2":0.01}, batch_dedicated_resources=BatchDedicatedResources( starting_replica_count=1, max_replica_count=2, machine_spec=my_machine_spec, ), )

Attributes

Name Description
features List[str]
Optional. Input feature names interested in monitoring. These should be a subset of the input feature names specified in the monitoring schema. If not specified, all features outlied in the monitoring schema will be used.
default_alert_threshold float
Optional. Default alert threshold for all the features.
feature_alert_thresholds Dict[str, float]
Optional. Per feature alert threshold will override default alert threshold.
batch_dedicated_resources machine_resources.BatchDedicatedResources
Optional. The config of resources used by the Model Monitoring during the batch explanation for non-AutoML models. If not set, n1-standard-2 machine type will be used by default.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年10月30日 UTC.