Copy processor versions and datasets across projects

This page contains steps to copy Document AI trained processor versions from one project to another along with dataset schema and samples from the source to destination processor. These steps automate the process of importing the processor version, deploying it, and setting it as the default version in the destination project.

Before you begin

  • Get a Google Cloud Project ID.
  • Have Document AI Processor ID.
  • Have Cloud Storage.
  • Use Python: Jupyter notebook (Vertex AI).
  • Need permissions to give access the service account in the source and destination projects.

Step-by-step procedure

The procedure is described in the following steps.

Step 1: Identify the service account associated with Vertex AI Notebook

!gcloud config list account

Output:

[core]
account = example@automl-project.iam.gserviceaccount.com
Your active configuration is: [default]

Step 2: Grant required permissions to the service account

In the Google Cloud project that is the intended destination for migration, add the service account that was acquired in the previous step as a principal and assign the two following roles:

  • Document AI Administrator
  • Storage Admin

See Granting roles to service accounts and Customer-managed encryption keys (CMEK) for more information.

processor-version-migrate-1

For the migration to work, the service account used for running this notebook needs to have:

  • Roles in both source and destination projects to create the dataset bucket, or create it if it does not exist, as well as read and write permissions to all objects.
  • Document AI Editor role in the source project as described in Import a processor version.

Download a JSON key for the service account, so that you can authenticate and authorize as Service Account. For more on this, see Service account keys.

Next:

  1. Go to the service account.
  2. Select the service account intended to perform this task.
  3. Go to the Keys tab, and click Add Key, then choose Create new key.
  4. Select the key type (preferably JSON).
  5. Click Create and download to specific path. processor-version-migrate-2

  6. Update path in service_account_key variable in the following snippet.

service_account_key='path_to_sa_key.json'
fromgoogle.oauth2import service_account
fromgoogle.cloudimport storage
# Authenticate the service account
credentials = service_account.Credentials.from_service_account_file(
 service_account_key
)
# pass this credentials variable to all client initializations
# storage_client = storage.Client(credentials=credentials)
# docai_client = documentai.DocumentProcessorServiceClient(credentials=credentials)

Step 3: Import libraries

importtime
frompathlibimport Path
fromtypingimport Optional, Tuple
fromgoogle.cloud.documentai_v1beta3.services.document_serviceimport pagers
fromgoogle.api_core.client_optionsimport ClientOptions
fromgoogle.api_core.operationimport Operation
fromgoogle.cloudimport documentai_v1beta3 as documentai
fromgoogle.cloudimport storage
fromtqdmimport tqdm

Step 4: Input details

  • source_project_id: Provide source project ID.
  • source_location: Provide Source Processor Location (us or eu).
  • source_processor_id: Provide Google Cloud Document AI Processor ID.
  • source_processor_version_to_import: Provide Google Cloud Document AI Processor Version ID for the trained version.
  • migrate_dataset: Provide this value as either True or False, if you want to migrate dataset from source processor to destination processor then provide True, else False. The default value is False.
  • source_exported_gcs_path: Provide Cloud Storage path to store JSON files.
  • destination_project_id: Provide destination project ID.
  • destination_processor_id: Provide Google Cloud Document AI Processor ID, either "" or processor_id from destination project.
source_project_id = "source-project-id"
source_location = "processor-location"
source_processor_id = "source-processor-id"
source_processor_version_to_import = "source-processor-version-id"
migrate_dataset = False # Either True or False
source_exported_gcs_path = (
 "gs://bucket/path/to/export_dataset/"
)
destination_project_id = "< destination-project-id >"
# Give an empty string if you wish to create a new processor
destination_processor_id = ""

Step 5: Run the code

importtime
frompathlibimport Path
fromtypingimport Optional, Tuple
fromgoogle.cloud.documentai_v1beta3.services.document_serviceimport pagers
fromgoogle.api_core.client_optionsimport ClientOptions
fromgoogle.api_core.operationimport Operation
fromgoogle.cloudimport documentai_v1beta3 as documentai
fromgoogle.cloudimport storage
fromtqdmimport tqdm
source_project_id = "source-project-id"
source_location = "processor-location"
source_processor_id = "source-processor-id"
source_processor_version_to_import = "source-processor-version-id"
migrate_dataset = False # Either True or False
source_exported_gcs_path = (
 "gs://bucket/path/to/export_dataset/"
)
destination_project_id = "< destination-project-id >"
# Give empty string if you wish to create a new processor
destination_processor_id = ""
exported_bucket_name = source_exported_gcs_path.split("/")[2]
exported_bucket_path_prefix = "/".join(source_exported_gcs_path.split("/")[3:])
destination_location = source_location
defsample_get_processor(project_id: str, processor_id: str, location: str)->Tuple[str, str]:
"""
 This function returns Processor Display Name and Type of Processor from source project
 Args:
 project_id (str): Project ID
 processor_id (str): Document AI Processor ID
 location (str): Processor Location
 Returns:
 Tuple[str, str]: Returns Processor Display name and type
 """
 client = documentai.DocumentProcessorServiceClient ()
 print(
 f"Fetching processor({processor_id}) details from source project ({project_id})"
 )
 name = f"projects/{project_id}/locations/{location }/processors/{processor_id}"
 request = documentai.GetProcessorRequest (
 name=name,
 )
 response = client.get_processor (request=request)
 print(f"Processor Name: {response.name}")
 print(f"Processor Display Name: {response.display_name}")
 print(f"Processor Type: {response.type_}")
 return response.display_name, response.type_
defsample_create_processor(project_id: str, location: str, display_name: str, processor_type: str)->documentai.Processor:
"""It will create Processor in Destination project
 Args:
 project_id (str): Project ID
 location (str): Location fo processor
 display_name (str): Processor Display Name
 processor_type (str): Google Cloud Document AI Processor type
 Returns:
 documentai.Processor: Returns details abouts newly created processor
 """
 client = documentai.DocumentProcessorServiceClient ()
 request = documentai.CreateProcessorRequest (
 parent=f"projects/{project_id}/locations/{location }",
 processor={
 "type_": processor_type,
 "display_name": display_name,
 },
 )
 print(f"Creating Processor in project: {project_id} in location: {location }")
 print(f"Display Name: {display_name} & Processor Type: {processor_type}")
 res = client.create_processor (request=request)
 return res
definitialize_dataset(project_id: str, processor_id: str, location: str)-> Operation:
"""It will configure dataset for target processor in destination project
 Args:
 project_id (str): Project ID
 processor_id (str): DocuemntAI Processor ID
 location (str): Processor Location
 Returns:
 Operation: An object representing a long-running operation
 """
 # opts = ClientOptions(api_endpoint=f"{location}-documentai.googleapis.com")
 client = documentai.DocumentServiceClient () # client_options=opts
 dataset = documentai.types.Dataset (
 name=f"projects/{project_id}/locations/{location }/processors/{processor_id}/dataset",
 state=3,
 unmanaged_dataset_config={},
 spanner_indexing_config={},
 )
 request = documentai.types.UpdateDatasetRequest (dataset=dataset)
 print(
 f"Configuring Dataset in project: {project_id} for processor: {processor_id}"
 )
 response = client.update_dataset(request=request)
 return response
defget_dataset_schema(project_id: str, processor_id: str, location: str)->documentai.DatasetSchema:
"""It helps to fetch processor schema
 Args:
 project_id (str): Project ID
 processor_id (str): DocumentAI Processor ID
 location (str): Processor Location
 Returns:
 documentai.DatasetSchema: Return deails about Processor Dataset Schema
 """
 # Create a client
 processor_name = (
 f"projects/{project_id}/locations/{location }/processors/{processor_id}"
 )
 client = documentai.DocumentServiceClient ()
 request = documentai.GetDatasetSchemaRequest (
 name=processor_name + "/dataset/datasetSchema"
 )
 # Make the request
 print(f"Fetching schema from source processor: {processor_id}")
 response = client.get_dataset_schema(request=request)
 return response
defupload_dataset_schema(schema: documentai.DatasetSchema)->documentai.DatasetSchema:
"""It helps to update the schema in destination processor
 Args:
 schema (documentai.DatasetSchema): Document AI Processor Schema details & Metadata
 Returns:
 documentai.DatasetSchema: Returns Dataset Schema object
 """
 client = documentai.DocumentServiceClient ()
 request = documentai.UpdateDatasetSchemaRequest (dataset_schema=schema)
 print("Updating Schema in destination processor")
 res = client.update_dataset_schema(request=request)
 return res
defstore_document_as_json(document: str, bucket_name: str, file_name: str)->None:
"""It helps to upload data to Cloud Storage and stores as a blob
 Args:
 document (str): Processor response in json string format
 bucket_name (str): Cloud Storage bucket name
 file_name (str): Cloud Storage blob uri
 """
 print(f"\tUploading file to Cloud Storage gs://{bucket_name}/{file_name}")
 storage_client = storage .Client ()
 process_result_bucket = storage_client.get_bucket (bucket_name)
 document_blob = storage .Blob (
 name=str(Path(file_name)), bucket=process_result_bucket
 )
 document_blob.upload_from_string (document, content_type="application/json")
deflist_documents(project_id: str, location: str, processor: str, page_size: Optional[int]=100, page_token: Optional[str]="")->pagers.ListDocumentsPager:
"""This function helps to list the samples present in processor dataset
 Args:
 project_id (str): Project ID
 location (str): Processor Location 
 processor (str): DocumentAI Processor ID
 page_size (Optional[int], optional): The maximum number of documents to return. Defaults to 100.
 page_token (Optional[str], optional): A page token, received from a previous ListDocuments call. Defaults to "".
 Returns:
 pagers.ListDocumentsPager: Returns all details about documents present in Processor Dataset
 """
 client = documentai.DocumentServiceClient ()
 dataset = (
 f"projects/{project_id}/locations/{location }/processors/{processor}/dataset"
 )
 request = documentai.types.ListDocumentsRequest (
 dataset=dataset,
 page_token=page_token,
 page_size=page_size,
 return_total_size=True,
 )
 print(f"Listingll documents/Samples present in processor: {processor}")
 operation = client.list_documents(request)
 return operation
defget_document(project_id: str, location: str, processor: str, doc_id: documentai.DocumentId)->documentai.GetDocumentResponse:
"""It will fetch data for individual sample/document present in dataset
 Args:
 project_id (str): Project ID
 location (str): Processor Location
 processor (str): Document AI Processor ID
 doc_id (documentai.DocumentId): Document identifier
 Returns:
 documentai.GetDocumentResponse: Returns data related to doc_id
 """
 client = documentai.DocumentServiceClient ()
 dataset = (
 f"projects/{project_id}/locations/{location }/processors/{processor}/dataset"
 )
 request = documentai.GetDocumentRequest (dataset=dataset, document_id=doc_id)
 operation = client.get_document(request)
 return operation
defimport_documents(project_id: str, processor_id: str, location: str, gcs_path: str)->Operation:
"""It helps to import samples/docuemnts from Cloud Storage path to processor via API call
 Args:
 project_id (str): Project ID
 processor_id (str): Document AI Processor ID
 location (str): Processor Location
 gcs_path (str): Cloud Storage path uri prefix 
 Returns:
 Operation: An object representing a long-running operation
 """
 client = documentai.DocumentServiceClient ()
 dataset = (
 f"projects/{project_id}/locations/{location }/processors/{processor_id}/dataset"
 )
 request = documentai.ImportDocumentsRequest (
 dataset=dataset,
 batch_documents_import_configs=[
 {
 "dataset_split": "DATASET_SPLIT_TRAIN",
 "batch_input_config": {
 "gcs_prefix": {"gcs_uri_prefix": gcs_path + "train/"}
 },
 },
 {
 "dataset_split": "DATASET_SPLIT_TEST",
 "batch_input_config": {
 "gcs_prefix": {"gcs_uri_prefix": gcs_path + "test/"}
 },
 },
 {
 "dataset_split": "DATASET_SPLIT_UNASSIGNED",
 "batch_input_config": {
 "gcs_prefix": {"gcs_uri_prefix": gcs_path + "unassigned/"}
 },
 },
 ],
 )
 print(
 f"Importing Documents/samples from {gcs_path} to corresponding tran_test_unassigned sections"
 )
 response = client.import_documents(request=request)
 return response
defimport_processor_version(source_processor_version_name: str, destination_processor_name: str)->Operation:
"""It helps to import processor version from source processor to destanation processor
 Args:
 source_processor_version_name (str): source processor name in this format projects/{project}/locations/{location}/processors/{processor}
 destination_processor_name (str): destination processor name in this format projects/{project}/locations/{location}/processors/{processor}
 Returns:
 Operation: An object representing a long-running operation
 """
 fromgoogle.cloudimport documentai_v1beta3
 # provide the source version(to copy) processor details in the following format
 client = documentai_v1beta3.DocumentProcessorServiceClient ()
 # provide the new processor name in the parent variable in format 'projects/{project_number}/locations/{location}/processors/{new_processor_id}'
 importgoogle.cloud.documentai_v1beta3asdocumentai
 op_import_version_req = (
 documentai.types.document_processor_service .ImportProcessorVersionRequest (
 processor_version_source=source_processor_version_name,
 parent=destination_processor_name,
 )
 )
 print("Importing processor from source to destination")
 print(f"\tSource: {source_processor_version_name}")
 print(f"\tDestination: {destination_processor_name}")
 # copying the processor
 operation = client.import_processor_version (request=op_import_version_req)
 print(operation.metadata )
 print("Waitin for operation to complete...")
 operation.result()
 return operation
defdeploy_and_set_default_processor_version(
 project_id: str, location: str, processor_id: str, processor_version_id: str
)->None:
"""It helps to deploy to imported processor version and set it as default version
 Args:
 project_id (str): Project ID
 location (str): Processor Location
 processor_id (str): Document AI Processor ID
 processor_version_id (str): Document AI Processor Version ID
 """
 # Construct the resource name of the processor version
 processor_name = (
 f"projects/{project_id}/locations/{location }/processors/{processor_id}"
 )
 default_processor_version_name = f"projects/{project_id}/locations/{location }/processors/{processor_id}/processorVersions/{processor_version_id}"
 # Initialize the Document AI client
 client_options = ClientOptions(api_endpoint=f"{location }-documentai.googleapis.com")
 client = documentai.DocumentProcessorServiceClient (client_options=client_options)
 # Deploy the processor version
 operation = client.deploy_processor_version (name=default_processor_version_name)
 print(f"Deploying processor version: {operation.operation.name}")
 print("Waiting for operation to complete...")
 result = operation.result()
 print("Processor version deployed")
 # Set the deployed version as the default version
 request = documentai.SetDefaultProcessorVersionRequest (
 processor=processor_name,
 default_processor_version=default_processor_version_name,
 )
 operation = client.set_default_processor_version (request=request)
 print(f"Setting default processor version: {operation.operation.name}")
 operation.result()
 print(f"Default processor version set {default_processor_version_name}")
defmain(destination_processor_id: str, migrate_dataset: bool = False)->None:
"""Entry function to perform Processor Migration from Source Project to Destination project
 Args:
 destination_processor_id (str): Either empty string or processor id in desination project
 """
 # Checking processor id of destination project
 if destination_processor_id == "":
 # Fetching Processor Display Name and Type of Processor from source project
 display_name, processor_type = sample_get_processor(
 source_project_id, source_processor_id, source_location
 )
 # Creating Processor in Destination project
 des_processor = sample_create_processor(
 destination_project_id, destination_location, display_name, processor_type
 )
 print(des_processor)
 destination_processor_id = des_processor.name.split("/")[-1]
 # configuring dataset for target processor in destination project
 r = initialize_dataset(
 destination_project_id, destination_processor_id, destination_location
 )
 # fetching processor schema from source processor
 exported_schema = get_dataset_schema(
 source_project_id, source_processor_id, source_location
 )
 exported_schema.name = f"projects/{destination_project_id}/locations/{destination_location}/processors/{destination_processor_id}/dataset/datasetSchema"
 # Copying schema from source processor to desination processor 
 import_schema = upload_dataset_schema(exported_schema)
 if migrate_dataset == True: # to migrate dataset from source to destination processor
 print("Migrating Dataset from source to destination processor")
 # Fetching/listing the samples/JSONs present in source processor dataset
 results = list_documents(source_project_id, source_location, source_processor_id)
 document_list = results.document_metadata
 while len(document_list) != results.total_size:
 page_token = results.next_page_token
 results = list_documents(
 source_project_id,
 source_location,
 source_processor_id,
 page_token=page_token,
 )
 document_list.extend(results.document_metadata)
 print("Exporting Dataset...")
 for doc in tqdm(document_list):
 doc_id = doc.document_id
 split_type = doc.dataset_type
 if split_type == 3:
 split = "unassigned"
 elif split_type == 2:
 split = "test"
 elif split_type == 1:
 split = "train"
 else:
 split = "unknown"
 file_name = doc.display_name
 # fetching/downloading data for individual sample/document present in dataset
 res = get_document(
 source_project_id, source_location, source_processor_id, doc_id
 )
 output_file_name = (
 f"{exported_bucket_path_prefix.strip('/')}/{split}/{file_name}.json"
 )
 # Converting Document AI Proto object to JSON string
 json_data = documentai.Document .to_json(res.document)
 # Uploading JSON data to specified Cloud Storage path
 store_document_as_json(json_data, exported_bucket_name, output_file_name)
 print(f"Importing dataset to {destination_processor_id}")
 gcs_path = source_exported_gcs_path.strip("/") + "/"
 project = destination_project_id
 location = destination_location
 processor = destination_processor_id
 # importing samples/docuemnts from Cloud Storage path to destination processor
 res = import_documents(project, processor, location, gcs_path)
 print(f"Waiting for {len(document_list)*1.5} seconds")
 time.sleep(len(document_list) * 1.5)
 else:
 print("\tSkipping Dataset Migration actions like, exporting source dataset to Cloud Storage and importing dataset to destination processor")
 # Checking for source processor version, if id provided then it will be imported to destination processor
 if source_processor_version_to_import != "":
 print(f"Importing Processor Version {source_processor_version_to_import}")
 source_version = f"projects/{source_project_id}/locations/{source_location}/processors/{source_processor_id}/processorVersions/{source_processor_version_to_import}"
 destination_version = f"projects/{destination_project_id}/locations/{destination_location}/processors/{destination_processor_id}"
 # source_version = f"projects/{source_project_id}/locations/us/processors/a82fc086440d7ea1/processorVersions/f1eeed93aad5e317" # Data for testing
 # Importing processor version from source processor to destanation processor
 operation = import_processor_version(source_version, destination_version)
 name = operation.metadata.common_metadata.resource
 destination_processor_version_id = name.split("/")[-1]
 # deploying newly imported processor version and set it as default version in desination project
 deploy_and_set_default_processor_version(
 destination_project_id,
 destination_location,
 destination_processor_id,
 destination_processor_version_id,
 )
main(destination_processor_id, migrate_dataset)
print("Process Completed!!!")

Step 6: Check output details

Go to the destination project and verify the processor's creation, dataset availability, and new processor version as the default version.

processor-version-migrate-3

processor-version-migrate-4

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年11月24日 UTC.