Develop and deploy agents on Vertex AI Agent Engine

This page demonstrates how to create and deploy an agent that returns the exchange rate between two currencies on a specified date, using the following agent frameworks:

Before you begin

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get 300ドル in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  3. Verify that billing is enabled for your Google Cloud project.

  4. Enable the Vertex AI and Cloud Storage APIs.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the APIs

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  6. Verify that billing is enabled for your Google Cloud project.

  7. Enable the Vertex AI and Cloud Storage APIs.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the APIs

To get the permissions that you need to use Vertex AI Agent Engine, ask your administrator to grant you the following IAM roles on your project:

For more information about granting roles, see Manage access to projects, folders, and organizations.

You might also be able to get the required permissions through custom roles or other predefined roles.

Install and initialize the Vertex AI SDK for Python

  1. Run the following command to install the Vertex AI SDK for Python and other required packages:

    ADK

    pipinstall--upgrade--quietgoogle-cloud-aiplatform[agent_engines,adk]>=1.112

    LangGraph

    pipinstall--upgrade--quietgoogle-cloud-aiplatform[agent_engines,langchain]>=1.112

    LangChain

    pipinstall--upgrade--quietgoogle-cloud-aiplatform[agent_engines,langchain]>=1.112

    AG2

    pipinstall--upgrade--quietgoogle-cloud-aiplatform[agent_engines,ag2]>=1.112

    LlamaIndex

    pipinstall--upgrade--quietgoogle-cloud-aiplatform[agent_engines,llama_index]>=1.112
  2. Authenticate as a user

    Colab

    Run the following code:

    fromgoogle.colabimport auth
    auth.authenticate_user(project_id="PROJECT_ID")
    

    Cloud Shell

    No action required.

    Local Shell

    Run the following command:

    gcloudauthapplication-defaultlogin
  3. Run the following code to import Vertex AI Agent Engine and initialize the SDK:

    importvertexai
    client = vertexai .Client(
     project="PROJECT_ID", # Your project ID.
     location="LOCATION", # Your cloud region.
    )
    

    Where:

Develop an agent

First, develop a tool:

defget_exchange_rate(
 currency_from: str = "USD",
 currency_to: str = "EUR",
 currency_date: str = "latest",
):
"""Retrieves the exchange rate between two currencies on a specified date."""
 importrequests
 response = requests.get(
 f"https://api.frankfurter.app/{currency_date}",
 params={"from": currency_from, "to": currency_to},
 )
 return response.json()

Next, instantiate an agent:

ADK

fromgoogle.adk.agentsimport Agent
fromvertexaiimport agent_engines
agent = Agent(
 model="gemini-2.0-flash",
 name='currency_exchange_agent',
 tools=[get_exchange_rate],
)
app = agent_engines.AdkApp(agent=agent)

LangGraph

fromvertexaiimport agent_engines
agent = agent_engines.LanggraphAgent(
 model="gemini-2.0-flash",
 tools=[get_exchange_rate],
 model_kwargs={
 "temperature": 0.28,
 "max_output_tokens": 1000,
 "top_p": 0.95,
 },
)

LangChain

fromvertexaiimport agent_engines
agent = agent_engines.LangchainAgent(
 model="gemini-2.0-flash",
 tools=[get_exchange_rate],
 model_kwargs={
 "temperature": 0.28,
 "max_output_tokens": 1000,
 "top_p": 0.95,
 },
)

AG2

fromvertexaiimport agent_engines
agent = agent_engines.AG2Agent(
 model="gemini-2.0-flash",
 runnable_name="Get Exchange Rate Agent",
 tools=[get_exchange_rate],
)

LlamaIndex

fromvertexai.previewimport reasoning_engines
defrunnable_with_tools_builder(model, runnable_kwargs=None, **kwargs):
 fromllama_index.core.query_pipelineimport QueryPipeline
 fromllama_index.core.toolsimport FunctionTool
 fromllama_index.core.agentimport ReActAgent
 llama_index_tools = []
 for tool in runnable_kwargs.get("tools"):
 llama_index_tools.append(FunctionTool.from_defaults(tool))
 agent = ReActAgent.from_tools(llama_index_tools, llm=model, verbose=True)
 return QueryPipeline(modules = {"agent": agent})
agent = reasoning_engines.LlamaIndexQueryPipelineAgent(
 model="gemini-2.0-flash",
 runnable_kwargs={"tools": [get_exchange_rate]},
 runnable_builder=runnable_with_tools_builder,
)

Finally, test the agent locally:

ADK

async for event in app.async_stream_query(
 user_id="USER_ID",
 message="What is the exchange rate from US dollars to SEK today?",
):
 print(event)
  • USER_ID: Choose your own user ID with a character limit of 128. For example, user-123.

LangGraph

agent.query(input={"messages": [
 ("user", "What is the exchange rate from US dollars to SEK today?"),
]})

LangChain

agent.query(
 input="What is the exchange rate from US dollars to SEK today?"
)

AG2

agent.query(
 input="What is the exchange rate from US dollars to SEK today?"
)

LlamaIndex

agent.query(
 input="What is the exchange rate from US dollars to SEK today?"
)

Deploy an agent

To deploy the agent:

ADK

remote_agent = client.agent_engines.create(
 agent=app,
 config={
 "requirements": ["google-cloud-aiplatform[agent_engines,adk]"],
 }
)

LangGraph

remote_agent = client.agent_engines.create(
 agent,
 config={
 "requirements": ["google-cloud-aiplatform[agent_engines,langchain]"],
 },
)

LangChain

remote_agent = client.agent_engines.create(
 agent,
 config={
 "requirements": ["google-cloud-aiplatform[agent_engines,langchain]"],
 },
)

AG2

fromvertexaiimport agent_engines
remote_agent = agent_engines.create (
 agent,
 config={
 "requirements": ["google-cloud-aiplatform[agent_engines,ag2]"],
 },
)

LlamaIndex

fromvertexaiimport agent_engines
remote_agent = agent_engines.create (
 agent,
 config={
 "requirements": ["google-cloud-aiplatform[agent_engines,llama_index]"],
 },
)

This creates a reasoningEngine resource in Vertex AI.

Use an agent

Test the deployed agent by sending a query:

ADK

async for event in remote_agent.async_stream_query(
 user_id="USER_ID",
 message="What is the exchange rate from US dollars to SEK today?",
):
 print(event)

where USER_ID is the user ID you defined when testing the agent locally. For example, currency-exchange.

LangGraph

remote_agent.query(input={"messages": [
 ("user", "What is the exchange rate from US dollars to SEK today?"),
]})

LangChain

remote_agent.query(
 input="What is the exchange rate from US dollars to SEK today?"
)

AG2

remote_agent.query(
 input="What is the exchange rate from US dollars to SEK today?"
)

LlamaIndex

remote_agent.query(
 input="What is the exchange rate from US dollars to SEK today?"
)

Clean up

To avoid incurring charges to your Google Cloud account for the resources used on this page, follow these steps.

remote_agent.delete(force=True)

What's next

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年10月16日 UTC.