Query public index to get nearest neighbors
Stay organized with collections
Save and categorize content based on your preferences.
After you've created and deployed the index, you can run queries to get the nearest neighbors.
Here are some examples for a match query to find the top nearest neighbors using the k-nearest neighbors algorithm (k-NN).
Example queries for public endpoint
Python
To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.
defvector_search_find_neighbors(
project:str,
location:str,
index_endpoint_name:str,
deployed_index_id:str,
queries:List[List[float]],
num_neighbors:int,
)->List[
List[aiplatform.matching_engine.matching_engine_index_endpoint.MatchNeighbor]
]:
"""Query the vector search index.
Args:
project (str): Required. Project ID
location (str): Required. The region name
index_endpoint_name (str): Required. Index endpoint to run the query
against.
deployed_index_id (str): Required. The ID of the DeployedIndex to run
the queries against.
queries (List[List[float]]): Required. A list of queries. Each query is
a list of floats, representing a single embedding.
num_neighbors (int): Required. The number of neighbors to return.
Returns:
List[List[aiplatform.matching_engine.matching_engine_index_endpoint.MatchNeighbor]] - A list of nearest neighbors for each query.
"""
#InitializetheVertexAIclient
aiplatform.init(project=project,location=location)
#Createtheindexendpointinstancefromanexistingendpoint.
my_index_endpoint=aiplatform.MatchingEngineIndexEndpoint(
index_endpoint_name=index_endpoint_name
)
#Querytheindexendpointforthenearestneighbors.
returnmy_index_endpoint.find_neighbors(
deployed_index_id=deployed_index_id,
queries=queries,
num_neighbors=num_neighbors,
)
Command-line
The publicEndpointDomainName
listed below can be found at
Deploy and is formatted as
<number>.<region>-<number>.vdb.vertexai.goog
.
$ curl -X POST -H "Content-Type: application/json" -H "Authorization: Bearer `gcloud auth print-access-token`" https://1957880287.us-central1-181224308459.vdb.vertexai.goog/v1/projects/181224308459/locations/us-central1/indexEndpoints/3370566089086861312:findNeighbors -d '{deployed_index_id: "test_index_public1", queries: [{datapoint: {datapoint_id: "0", feature_vector: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, neighbor_count: 5}]}'
This curl example demonstrates how to call from http(s)
clients,
although public endpoint supports dual protocol for restful and
grpc_cli
.
$ curl -X POST -H "Content-Type: application/json" -H "Authorization: Bearer `gcloud auth print-access-token`" https://1957880287.us-central1-181224308459.vdb.vertexai.goog/v1/projects/${PROJECT_ID}/locations/us-central1/indexEndpoints/${INDEX_ENDPOINT_ID}:readIndexDatapoints -d '{deployed_index_id:"test_index_public1", ids: ["606431", "896688"]}'
This curl example demonstrates how to query with token and numeric restricts.
$ curl -X POST -H "Content-Type: application/json" -H "Authorization: Bearer `gcloud auth print-access-token`" https://${PUBLIC_ENDPOINT_DOMAIN}/v1/projects/${PROJECT_ID}/locations/${LOCATION}/indexEndpoints/${INDEX_ENDPOINT_ID}:findNeighbors -d '{deployed_index_id:"${DEPLOYED_INDEX_ID}", queries: [{datapoint: {datapoint_id:"x", feature_vector: [1, 1], "sparse_embedding": {"values": [111.0,111.1,111.2], "dimensions": [10,20,30]}, numeric_restricts: [{namespace: "int-ns", value_int: -2, op: "GREATER"}, {namespace: "int-ns", value_int: 4, op: "LESS_EQUAL"}, {namespace: "int-ns", value_int: 0, op: "NOT_EQUAL"}], restricts: [{namespace: "color", allow_list: ["red"]}]}}]}'
Console
Use these instructions to query an index deployed to a public endpoint from the console.
- In the Vertex AI section of the Google Cloud console, go to the Deploy and Use section. Select Vector Search.
- Select the index you want to query. The Index info page opens.
- Scroll down to the Deployed indexes section and select the deployed index you want to query. The Deployed index info page opens.
- From the Query index section, select whether to query by a dense embedding value, a sparse embedding value, a hybrid embedding value (dense and sparse embeddings), or a specific data point.
- Enter the query parameters for the type of query you selected. For example, if you're querying by a dense embedding, enter the embedding vector to query by.
- Execute the query using the provided curl command, or by running with Cloud Shell.
- If using Cloud Shell, select Run in Cloud Shell.
- Run in Cloud Shell.
- The results return nearest neighbors.
Hybrid queries
Hybrid search uses both dense and sparse embeddings for searches based on combination of keyword search and semantic search.
Python
To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.
defvector_search_find_neighbors_hybrid_queries(
project:str,
location:str,
index_endpoint_name:str,
deployed_index_id:str,
num_neighbors:int,
)->List[
List[aiplatform.matching_engine.matching_engine_index_endpoint.MatchNeighbor]
]:
"""Query the vector search index using example hybrid queries.
Args:
project(str):Required.ProjectID
location(str):Required.Theregionname
index_endpoint_name(str):Required.Indexendpointtorunthequery
against.
deployed_index_id(str):Required.TheIDoftheDeployedIndextorun
thequeriesagainst.
num_neighbors(int):Required.Thenumberofneighborstoreturn.
Returns:
List[List[aiplatform.matching_engine.matching_engine_index_endpoint.MatchNeighbor]]-Alistofnearestneighborsforeachquery.
"""
#InitializetheVertexAIclient
aiplatform.init(project=project,location=location)
#Createtheindexendpointinstancefromanexistingendpoint.
my_index_endpoint=aiplatform.MatchingEngineIndexEndpoint(
index_endpoint_name=index_endpoint_name
)
#Queryhybriddatapoints,sparse-onlydatapoints,anddense-onlydatapoints.
hybrid_queries=[
aiplatform.matching_engine.matching_engine_index_endpoint.HybridQuery(
dense_embedding=[1,2,3],
sparse_embedding_dimensions=[10,20,30],
sparse_embedding_values=[1.0,1.0,1.0],
rrf_ranking_alpha=0.5,
),
aiplatform.matching_engine.matching_engine_index_endpoint.HybridQuery(
dense_embedding=[1,2,3],
sparse_embedding_dimensions=[10,20,30],
sparse_embedding_values=[0.1,0.2,0.3],
),
aiplatform.matching_engine.matching_engine_index_endpoint.HybridQuery(
sparse_embedding_dimensions=[10,20,30],
sparse_embedding_values=[0.1,0.2,0.3],
),
aiplatform.matching_engine.matching_engine_index_endpoint.HybridQuery(
dense_embedding=[1,2,3]
),
]
returnmy_index_endpoint.find_neighbors(
deployed_index_id=deployed_index_id,
queries=hybrid_queries,
num_neighbors=num_neighbors,
)
Queries with filtering and crowding
Filtering vector matches lets you restrict your nearest neighbor results to specific categories. Filters can also designate categories to exclude from your results.
Per-crowding neighbor limits can increase result diversity by limiting the number of results returned from any single crowding tag in your index data.
Python
To learn how to install or update the Vertex AI SDK for Python, see Install the Vertex AI SDK for Python. For more information, see the Python API reference documentation.
defvector_search_find_neighbors_filtering_crowding(
project:str,
location:str,
index_endpoint_name:str,
deployed_index_id:str,
queries:List[List[float]],
num_neighbors:int,
filter:List[aiplatform.matching_engine.matching_engine_index_endpoint.Namespace],
numeric_filter:List[
aiplatform.matching_engine.matching_engine_index_endpoint.NumericNamespace
],
per_crowding_attribute_neighbor_count:int,
)->List[
List[aiplatform.matching_engine.matching_engine_index_endpoint.MatchNeighbor]
]:
"""Query the vector search index with filtering and crowding.
Args:
project (str): Required. Project ID
location (str): Required. The region name
index_endpoint_name (str): Required. Index endpoint to run the query
against.
deployed_index_id (str): Required. The ID of the DeployedIndex to run
the queries against.
queries (List[List[float]]): Required. A list of queries. Each query is
a list of floats, representing a single embedding.
num_neighbors (int): Required. The number of neighbors to return.
filter (List[Namespace]): Required. A list of Namespaces for filtering
the matching results. For example,
[Namespace("color", ["red"], []), Namespace("shape", [], ["square"])]
will match datapoints that satisfy "redcolor" but not include
datapoints with "squareshape".
numeric_filter (List[NumericNamespace]): Required. A list of
NumericNamespaces for filtering the matching results. For example,
[NumericNamespace(name="cost", value_int=5, op="GREATER")] will limit
the matching results to datapoints with cost greater than 5.
per_crowding_attribute_neighbor_count (int): Required. The maximum
number of returned matches with the same crowding tag.
Returns:
List[List[aiplatform.matching_engine.matching_engine_index_endpoint.MatchNeighbor]] - A list of nearest neighbors for each query.
"""
#InitializetheVertexAIclient
aiplatform.init(project=project,location=location)
#Createtheindexendpointinstancefromanexistingendpoint.
my_index_endpoint=aiplatform.MatchingEngineIndexEndpoint(
index_endpoint_name=index_endpoint_name
)
#Querytheindexendpointforthenearestneighbors.
returnmy_index_endpoint.find_neighbors(
deployed_index_id=deployed_index_id,
queries=queries,
num_neighbors=num_neighbors,
filter=filter,
numeric_filter=numeric_filter,
per_crowding_attribute_neighbor_count=per_crowding_attribute_neighbor_count,
)
Query-time settings that impact performance
The following query-time parameters can affect latency, availability, and cost when using Vector Search. This guidance applies to most cases. However, always experiment with your configurations to make sure that they work for your use case.
For parameter definitions, see Index configuration parameters.
Parameter | About | Performance impact |
---|---|---|
approximateNeighborsCount |
Tells the algorithm the number of approximate results to retrieve from each shard.
The value of
The corresponding REST API name for this field is
|
Increasing the value of
Decreasing the value of
|
setNeighborCount |
Specifies the number of results that you want the query to return.
The corresponding REST API name for this field is
|
Values less than or equal to 300 remain performant in most use cases. For larger values, test for your specific use case. |
fractionLeafNodesToSearch |
Controls the percentage of leaf nodes to visit when searching for nearest
neighbors. This is related to the leafNodeEmbeddingCount in
that the more embeddings per leaf node, the more data examined per leaf.
The corresponding REST API name for this field is
|
Increasing the value of
Decreasing the value of
|