Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
SVM Tie Breaking Example#
Tie breaking is costly if decision_function_shape='ovr', and therefore it
is not enabled by default. This example illustrates the effect of the
break_ties parameter for a multiclass classification problem and
decision_function_shape='ovr'.
The two plots differ only in the area in the middle where the classes are
tied. If break_ties=False, all input in that area would be classified as
one class, whereas if break_ties=True, the tie-breaking mechanism will
create a non-convex decision boundary in that area.
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause importmatplotlib.pyplotasplt importnumpyasnp fromsklearn.datasetsimport make_blobs fromsklearn.svmimport SVC X, y = make_blobs (random_state=27) fig, sub = plt.subplots (2, 1, figsize=(5, 8)) titles = ("break_ties = False", "break_ties = True") for break_ties, title, ax in zip((False, True), titles, sub.flatten()): svm = SVC ( kernel="linear", C=1, break_ties=break_ties, decision_function_shape="ovr" ).fit(X, y) xlim = [X[:, 0].min(), X[:, 0].max()] ylim = [X[:, 1].min(), X[:, 1].max()] xs = np.linspace (xlim[0], xlim[1], 1000) ys = np.linspace (ylim[0], ylim[1], 1000) xx, yy = np.meshgrid (xs, ys) pred = svm.predict(np.c_ [xx.ravel(), yy.ravel()]) colors = [plt.cm.Accent(i) for i in [0, 4, 7]] points = ax.scatter(X[:, 0], X[:, 1], c=y, cmap="Accent") classes = [(0, 1), (0, 2), (1, 2)] line = np.linspace (X[:, 1].min() - 5, X[:, 1].max() + 5) ax.imshow( -pred.reshape(xx.shape), cmap="Accent", alpha=0.2, extent=(xlim[0], xlim[1], ylim[1], ylim[0]), ) for coef, intercept, col in zip(svm.coef_, svm.intercept_, classes): line2 = -(line * coef[1] + intercept) / coef[0] ax.plot(line2, line, "-", c=colors[col[0]]) ax.plot(line2, line, "--", c=colors[col[1]]) ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_title(title) ax.set_aspect("equal") plt.show ()
Total running time of the script: (0 minutes 1.087 seconds)
Related examples
Demonstrating the different strategies of KBinsDiscretizer
Varying regularization in Multi-layer Perceptron
Decision boundary of semi-supervised classifiers versus SVM on the Iris dataset