Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Iso-probability lines for Gaussian Processes classification (GPC)#
A two-dimensional classification example showing iso-probability lines for the predicted probabilities.
plot gpc isoprobabilityLearned kernel: 0.0256**2 * DotProduct(sigma_0=5.72) ** 2
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause importnumpyasnp frommatplotlibimport cm frommatplotlibimport pyplot as plt fromsklearn.gaussian_processimport GaussianProcessClassifier fromsklearn.gaussian_process.kernelsimport ConstantKernel as C fromsklearn.gaussian_process.kernelsimport DotProduct # A few constants lim = 8 defg(x): """The function to predict (classification will then consist in predicting whether g(x) <= 0 or not)""" return 5.0 - x[:, 1] - 0.5 * x[:, 0] ** 2.0 # Design of experiments X = np.array ( [ [-4.61611719, -6.00099547], [4.10469096, 5.32782448], [0.00000000, -0.50000000], [-6.17289014, -4.6984743], [1.3109306, -6.93271427], [-5.03823144, 3.10584743], [-2.87600388, 6.74310541], [5.21301203, 4.26386883], ] ) # Observations y = np.array (g(X) > 0, dtype=int) # Instantiate and fit Gaussian Process Model kernel = C (0.1, (1e-5, np.inf )) * DotProduct (sigma_0=0.1) ** 2 gp = GaussianProcessClassifier (kernel=kernel) gp.fit(X, y) print("Learned kernel: %s " % gp.kernel_) # Evaluate real function and the predicted probability res = 50 x1, x2 = np.meshgrid (np.linspace (-lim, lim, res), np.linspace (-lim, lim, res)) xx = np.vstack ([x1.reshape(x1.size), x2.reshape(x2.size)]).T y_true = g(xx) y_prob = gp.predict_proba(xx)[:, 1] y_true = y_true.reshape((res, res)) y_prob = y_prob.reshape((res, res)) # Plot the probabilistic classification iso-values fig = plt.figure (1) ax = fig.gca() ax.axes.set_aspect("equal") plt.xticks ([]) plt.yticks ([]) ax.set_xticklabels([]) ax.set_yticklabels([]) plt.xlabel ("$x_1$") plt.ylabel ("$x_2$") cax = plt.imshow (y_prob, cmap=cm.gray_r, alpha=0.8, extent=(-lim, lim, -lim, lim)) norm = plt.matplotlib.colors.Normalize(vmin=0.0, vmax=0.9) cb = plt.colorbar (cax, ticks=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0], norm=norm) cb.set_label(r"${\rm \mathbb{P}}\left[\widehat{G}(\mathbf{x}) \leq 0\right]$") plt.clim (0, 1) plt.plot (X[y <= 0, 0], X[y <= 0, 1], "r.", markersize=12) plt.plot (X[y > 0, 0], X[y > 0, 1], "b.", markersize=12) plt.contour (x1, x2, y_true, [0.0], colors="k", linestyles="dashdot") cs = plt.contour (x1, x2, y_prob, [0.666], colors="b", linestyles="solid") plt.clabel (cs, fontsize=11) cs = plt.contour (x1, x2, y_prob, [0.5], colors="k", linestyles="dashed") plt.clabel (cs, fontsize=11) cs = plt.contour (x1, x2, y_prob, [0.334], colors="r", linestyles="solid") plt.clabel (cs, fontsize=11) plt.show ()
Total running time of the script: (0 minutes 0.132 seconds)
Related examples
SGD: Maximum margin separating hyperplane
SGD: Maximum margin separating hyperplane
Two-class AdaBoost
Illustration of Gaussian process classification (GPC) on the XOR dataset
Illustration of Gaussian process classification (GPC) on the XOR dataset
Density Estimation for a Gaussian mixture
Density Estimation for a Gaussian mixture