人工智慧
前言
簡介
知識表達
知識學習
理論方法
搜尋優化
邏輯推論
神經網路
機率統計
實務應用
專家系統
自然語言
分群分類
程式語言
Prolog
javascript
程式實作
邏輯推論
爬山算法
基因算法
機率學習
交談程式
數字辨識
訊息
相關網站
參考文獻
最新修改
簡體版
English
[フレーム]
盡管我們對 AI技術的期待越來越往後延,但是,這並不代表 AI 的方法越來越落後。相反的,理論不斷的創新,而且越來越具有實務性。AI 理論已經是資訊科學領域當中最為龐大的一個分支,任何的教科書想要全面介紹這些理論,都彷彿是在完成不可能的任務。
搜尋法
搜尋法一直是 AI 研究的主要方法,但是很少人會將邏輯推論與類神經網路也視為一種搜尋法。然而,近來的發展顯示,用搜尋法的觀點,可以很清楚的看出每一個方法都優缺點,其他的各種方法也都可以用搜尋法的角度,進行理論上的分析。
許多無法歸類到邏輯推論與類神經網路的方法,像是貪婪式演算法、模擬退火法、遺傳演算法、鳥群演算法、蟻群演算法等等,都是在進行搜尋工作。
布林邏輯
從早期的布林邏輯推論方法開始,AI 研究人員認為可以將全世界的知識,透過邏輯敘述的方式累積,然後利用這些知識進行推論,這便是知識工程或專家系統的任務。此種方式企圖直接解答智慧之謎,其研究方法上認為『知識 = 智慧』。
類神經網路
接著,研究的焦點轉移到類神經網路 等非邏輯式的領域上。類神經在 1986 年之後,開始吸引了許多研究者的目光,原因是此類方法在語音與影像識別上,具有優秀的表現,將手寫辨識與語音識別等問題的正確率拉到了 80 % 左右。這使得這個曾經被 Malvin Minsky 這位類神經先驅證明為不可行的方法 成為當紅炸子雞。
現在,我們知道,類神經網路在影像辨識、語音識別等領域上表現很好,但是,類神經網路在符號式的領域,像是自然語言與機器翻譯上,就顯得力有未逮,甚至是格格不入了。
其實,邏輯推論與類神經網路,都可以視為搜尋方法的一種特例。因為,這些方法都是在搜尋問題的答案,然而在問題的表達上,布林邏輯堆論採用了二分法,也就是只有 0 與 1 的世界。而類神經網路,則採用了實數的方式表達神經元之間的強度,於是造成了一個由實數所構成的世界。這兩者並非是互斥的,或許,在未來,我們會發現兩者攜手合作的研究陸續出現。
機率統計
機率統計方法在其他領域通常很快就成為主流方法,但是在 AI 領域卻經過了很久都沒受到重視,直到最近由於隱馬可夫模型 (HMM) 逐漸在語音辨識領域嶄露頭角,才開始有越來越興盛的趨勢。最近,統計方法在機器翻譯上有越來越強的趨勢,像是貝氏網路 (Bayisian Network)、期望最佳化學習法 (Expectation-Maximization, EM)、蒙地卡羅馬可夫學習法 (Montecarlo Markov Chain, MCMC) 等,都開始展露其優勢,相信在未來的幾年,機率統計法將會在 AI 領域大展身手,推進整個 AI 科學技術的進展。
[フレーム]
本網頁的作者、授權與引用方式
- 作者
- 陳鍾誠,於金門大學資訊工程系,電子郵件:wt.ude.uqn|ccc#wt.ude.uqn|ccc,網站:http://ccckmit.wikidot.com。
- 授權
- 本文採用創作共用 (Creative Common) 3.0 版的 姓名標示─非商業性─相同方式分享 授權條款,歡迎轉載或修改使用,但若做為商業使用時必須取得授權,引用本文時請參考下列格式。
- 中文版 (APA格式)
- 陳鍾誠 (23 Aug 2010 01:29),(網頁標題) AI 的方法,(網站標題) 陳鍾誠的網站,取自 http://ccckmit.wikidot.com/ai:method ,網頁修改第 1 版。
- 英文版 (APA格式)
- Chung-Chen Chen (23 Aug 2010 01:29), Retrieved from http://ccckmit.wikidot.com/ai:method , Page Revision 1.