Skip to content [フレーム]
1887

Short Communication

Open Access

Putative mutations associated with tetracycline resistance detected in Treponema spp.: an analysis of 4,355 Spirochaetales genomes Open Access

Abstract

The resurgence of syphilis has necessitated novel prophylactic strategies, such as the use of doxycycline post-exposure prophylaxis. However, the potential for increased doxycycline use to select for tetracycline resistance represents significant challenges in managing this sexually transmitted infection. This study aims to identify chromosomal mutations associated with tetracycline resistance in Spirochaetales to inform molecular surveillance tools. Whole-genome sequences (WGSs) from the Spirochaetales order, including 4,355 genomes, were analysed for the presence of mutations in 16S rRNA and non-synonymous mutations in the rpsC and rpsJ genes. The study utilized WGS from GenBank® and sequence data from the PubMLST Treponema pallidum isolate collection. Genetic resistance to tetracycline was detected using a combination of blastn searches and gene–gene analysis. A transition mutation TGA to TGG at positions 965–967 in the 16S rRNA gene was detected in 5.6% of Treponema spp. and 4.0% of Spirochaeta spp. genomes. The rpsJ gene exhibited a V57G aa substitution across a significant subset of Treponema spp. (n=14) and Spirochaeta spp. (n=1). Notably, the V57K substitution was present in Spirochaeta spp. (n=17) and Treponema spp. (n=15). The rpsC gene had the H178Q mutation and was found to be present in the Spirochaetales bacterium (n=4). The identification of putative mutations associated with tetracycline resistance in Spirochaetales provides a foundation for the development of rapid molecular tests. This study underscores the complexity of antibiotic resistance mechanisms and the critical importance of surveillance of genetic resistance determinants in the era of antibiotic prophylaxis for sexually transmitted infection management.

  • Received:
  • Accepted:
  • Published Online:
Funding
This study was supported by the:
  • SOFI 2021 (Award "PReventing the Emergence of untreatable STIs via radical Prevention" (PRESTIP))
    • Principal Award Recipient: ChrisKenyon
© 2025 The Authors
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/acmi/10.1099/acmi.0.000963.v4
2025年10月13日
2025年10月22日
Download as PowerPoint
Loading full text...

Full text loading...

/deliver/fulltext/acmi/7/10/acmi000963.v4.html?itemId=/content/journal/acmi/10.1099/acmi.0.000963.v4&mimeType=html&fmt=ahah

References

  1. Mitjà O, Padovese V, Folch C, Rossoni I, Marks M et al. Epidemiology and determinants of reemerging bacterial sexually transmitted infections (STIs) and emerging STIs in Europe. Lancet Reg Health Eur 2023; 34:100742 [View Article] [PubMed]
    [Google Scholar]
  2. Molina J-M, Charreau I, Chidiac C, Pialoux G, Cua E et al. Post-exposure prophylaxis with doxycycline to prevent sexually transmitted infections in men who have sex with men: an open-label randomised substudy of the ANRS IPERGAY trial. Lancet Infect Dis 2018; 18:308–317 [View Article] [PubMed]
    [Google Scholar]
  3. Luetkemeyer AF, Donnell D, Dombrowski JC, Cohen S, Grabow C et al. Postexposure doxycycline to prevent bacterial sexually transmitted infections. N Engl J Med 2023; 388:1296–1306 [View Article] [PubMed]
    [Google Scholar]
  4. Molina JM, Bercot B, Assoumou L et al. ANRS 174 DOXYVAC: an open-label randomized trial to prevent STIs in MSM on PrEP. In 30th Conference on Retroviruses and Opportunistic Infections (CROI) 2023 pp 2–22
    [Google Scholar]
  5. Mårdh O, Plachouras D. Using doxycycline for prophylaxis of bacterial sexually transmitted infections: considerations for the European Union and European Economic Area. Euro Surveill 2023; 28:2300621 [View Article] [PubMed]
    [Google Scholar]
  6. Vanbaelen T, Tsoumanis A, Kenyon C. Total antimicrobial consumption in doxycycline postexposure prophylaxis cohorts and the intensity of screening for bacterial sexually transmitted infections. Clin Infect Dis 2024; 78:803–805 [View Article] [PubMed]
    [Google Scholar]
  7. Vanbaelen T, Manoharan-Basil SS, Kenyon C. Doxycycline postexposure prophylaxis could induce cross-resistance to other classes of antimicrobials in Neisseria gonorrhoeae : an in silico analysis. Sex Transm Dis 2023; 50:490–493 [View Article] [PubMed]
    [Google Scholar]
  8. Gestels Z, Manoharan-Basil SS, Kenyon C. Doxycycline post exposure prophylaxis could select for cross-resistance to other antimicrobials in various pathogens: an in silico analysis. Int J STD AIDS 2023; 34:962–968 [View Article] [PubMed]
    [Google Scholar]
  9. Kenyon C. Doxycycline post-exposure prophylaxis could theoretically select for resistance to various antimicrobials in 19 pathobionts: an in silico analysis. Int J Infect Dis 2024; 142:106974 [View Article] [PubMed]
    [Google Scholar]
  10. Nurse-Findlay S, Taylor MM, Savage M, Mello MB, Saliyou S et al. Shortages of benzathine penicillin for prevention of mother-to-child transmission of syphilis: an evaluation from multi-country surveys and stakeholder interviews. PLoS Med 2017; 14:e1002473 [View Article] [PubMed]
    [Google Scholar]
  11. Wu B-R, Liu W-C, Wu P-Y, Su Y-C, Yang S-P et al. Surveillance study of Treponema pallidum harbouring tetracycline resistance mutations in patients with syphilis. Int J Antimicrob Agents 2014; 44:370–372 [View Article] [PubMed]
    [Google Scholar]
  12. Sanchez A, Mayslich C, Malet I, Grange PA, Janier M et al. Surveillance of antibiotic resistance genes in Treponema pallidum subspecies pallidum from patients with early syphilis in France. Acta Derm Venereol 2020; 100:adv00221 [View Article] [PubMed]
    [Google Scholar]
  13. Xiao H, Li Z, Li F, Wen J, Liu D et al. Preliminary study of tetracycline resistance genes in Treponema pallidum. J Glob Antimicrob Resist 2017; 9:1–2 [View Article] [PubMed]
    [Google Scholar]
  14. Lukehart S. Could doxycycline PEP induce tetracycline resistance in Treponema pallidum?. In STI Post-Exposure Prophylaxis with Doxycycline SM Consultation Summary Report NACCHO; 2022 https://STI-Post-Exposure-Prophylaxis-with-Doxycycline-Report.pdf
    [Google Scholar]
  15. Xiao Y, Liu S, Liu Z, Xie Y, Jiang C et al. Molecular subtyping and surveillance of resistance genes in Treponema pallidum DNA from patients with secondary and latent syphilis in Hunan, China. Sex Transm Dis 2016; 43:310–316 [View Article] [PubMed]
    [Google Scholar]
  16. Beale MA, Marks M, Cole MJ, Lee M-K, Pitt R et al. Global phylogeny of Treponema pallidum lineages reveals recent expansion and spread of contemporary syphilis. Nat Microbiol 2021; 6:1549–1560 [View Article] [PubMed]
    [Google Scholar]
  17. Mikalová L, Grillová L, Osbak K, Strouhal M, Kenyon C et al. Molecular typing of syphilis-causing strains among human immunodeficiency virus-positive patients in Antwerp, Belgium. Sex Transm Dis 2017; 44:376–379 [View Article] [PubMed]
    [Google Scholar]
  18. Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 1998; 281:375–388 [View Article] [PubMed]
    [Google Scholar]
  19. Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med 2016; 6:a025387 [View Article] [PubMed]
    [Google Scholar]
  20. Trieber CA, Taylor DE. Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J Bacteriol 2002; 184:2131–2140 [View Article] [PubMed]
    [Google Scholar]
  21. Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT et al. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 2000; 103:1143–1154 [View Article] [PubMed]
    [Google Scholar]
  22. Pioletti M, Schlünzen F, Harms J, Zarivach R, Glühmann M et al. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 2001; 20:1829–1839 [View Article] [PubMed]
    [Google Scholar]
  23. Buck MA, Cooperman BS. Single protein omission reconstitution studies of tetracycline binding to the 30S subunit of Escherichia coli ribosomes. Biochemistry 1990; 29:5374–5379 [View Article] [PubMed]
    [Google Scholar]
  24. Lupien A, Gingras H, Leprohon P, Ouellette M. Induced tigecycline resistance in Streptococcus pneumoniae mutants reveals mutations in ribosomal proteins and rRNA. J Antimicrob Chemother 2015; 70:2973–2980 [View Article] [PubMed]
    [Google Scholar]
  25. Villa L, Feudi C, Fortini D, García-Fernández A, Carattoli A. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother 2014; 58:1707–1712 [View Article] [PubMed]
    [Google Scholar]
  26. Edmondson DG, Wormser GP, Norris SJ. In vitro susceptibility of Treponema pallidum subsp. pallidum to doxycycline. Antimicrob Agents Chemother 2020; 64: [View Article]
    [Google Scholar]
  27. Tantalo LC, Lieberman NAP, Pérez-Mañá C, Suñer C, Vall Mayans M et al. Antimicrobial susceptibility of Treponema pallidum subspecies pallidum: an in-vitro study. Lancet Microbe 2023; 4:e994–e1004 [View Article] [PubMed]
    [Google Scholar]
  28. Hayes KA, Dressler JM, Norris SJ, Edmondson DG, Jutras BL. A large screen identifies beta-lactam antibiotics which can be repurposed to target the syphilis agent. NPJ Antimicrob Resist 2023; 1:4 [View Article] [PubMed]
    [Google Scholar]
  29. Tantalo LC, Luetkemeyer A, P. Lieberman NA, Nunley BE, Avendaño C et al. Long-term in vitro exposure of Treponema pallidum to sub-bactericidal doxycycline did not induce resistance: Implications for doxy-PEP and syphilis. J Infect Dis 2024 [View Article]
    [Google Scholar]
  30. Hunfeld K-P, Kraiczy P, Kekoukh E, Schäfer V, Brade V. Standardised in vitro susceptibility testing of Borrelia burgdorferi against well-known and newly developed antimicrobial agents—possible implications for new therapeutic approaches to Lyme disease. Int J Med Microbiol 2002; 291 Suppl 33:125–137 [View Article] [PubMed]
    [Google Scholar]
  31. Sicklinger M, Wienecke R, Neubert U. In vitro susceptibility testing of four antibiotics against Borrelia burgdorferi: a comparison of results for the three genospecies Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi sensu stricto. J Clin Microbiol 2003; 41:1791–1793 [View Article] [PubMed]
    [Google Scholar]
  32. Moreno LZ, Miraglia F, Lilenbaum W, Neto JSF, Freitas JC et al. Profiling of Leptospira interrogans, L. santarosai, L. meyeri and L. borgpetersenii by SE-AFLP, PFGE and susceptibility testing—a continuous attempt at species and serovar differentiation. Emerg Microbes Infect 2016; 5:e17 [View Article] [PubMed]
    [Google Scholar]
  33. Manoharan-Basil SS, Laumen JGE, Van Dijck C, De Block T, De Baetselier I et al. Evidence of horizontal gene transfer of 50S ribosomal genes rplB, rplD, and rplY in Neisseria gonorrhoeae. Front Microbiol 2021; 12:1263 [View Article]
    [Google Scholar]
  34. Silva M, Machado M, Silva DN, Rossi M, Moran-Gilad J et al. chewBBACA: a complete suite for gene-by-gene schema creation and strain identification. Bioinformatics 2018 [View Article]
    [Google Scholar]
  35. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  36. Grillová L, Bawa T, Mikalová L, Gayet-Ageron A, Nieselt K et al. Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme. PLoS One 2018; 13:e0200773 [View Article] [PubMed]
    [Google Scholar]
  37. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  38. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  39. Pringle M, Fellström C, Johansson K-E. Decreased susceptibility to doxycycline associated with a 16S rRNA gene mutation in Brachyspira hyodysenteriae. Vet Microbiol 2007; 123:245–248 [View Article] [PubMed]
    [Google Scholar]
  40. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65:232–260 [View Article] [PubMed]
    [Google Scholar]
  41. Izghirean N, Waidacher C, Kittinger C, Chyba M, Koraimann G et al. Effects of ribosomal protein S10 flexible loop mutations on tetracycline and tigecycline susceptibility of Escherichia coli. Front Microbiol 2021; 12:663835 [View Article] [PubMed]
    [Google Scholar]
  42. Williams G, Smith I. Chromosomal mutations causing resistance to tetracycline in Bacillus subtilis. Mol Gen Genet 1979; 177:23–29 [View Article] [PubMed]
    [Google Scholar]
  43. Cattoir V, Isnard C, Cosquer T, Odhiambo A, Bucquet F et al. Genomic analysis of reduced susceptibility to tigecycline in Enterococcus faecium. Antimicrob Agents Chemother 2015; 59:239–244 [View Article] [PubMed]
    [Google Scholar]
  44. Stamm LV. Global challenge of antibiotic-resistant Treponema pallidum. Antimicrob Agents Chemother 2010; 54:583–589 [View Article] [PubMed]
    [Google Scholar]
/content/journal/acmi/10.1099/acmi.0.000963.v4
Loading
Putative mutations associated with tetracycline resistance detected in Treponema spp.: an analysis of 4,355 Spirochaetales genomes
Access Microbiology 7, 000963.v4 (2025); https://doi.org/10.1099/acmi.0.000963.v4
/content/journal/acmi/10.1099/acmi.0.000963.v4
/content/journal/acmi/10.1099/acmi.0.000963.v4
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Most read this month

Article
content/journal/acmi
Journal
5
3
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error
Microbiology Society:
http://instance.metastore.ingenta.com/content/journal/acmi/10.1099/acmi.0.000963.v4
10.1099/acmi.0.000963.v4
SEARCH_EXPAND_ITEM

AltStyle によって変換されたページ (->オリジナル) /