To show that any tree is 2-colorable.
Explanation of Solution
Given Information:
A Introduction to Algorithms, Chapter B, Problem 1P , additional homework tip 1of an undirected graph Introduction to Algorithms, Chapter B, Problem 1P , additional homework tip 2is a function Introduction to Algorithms, Chapter B, Problem 1P , additional homework tip 3such that Introduction to Algorithms, Chapter B, Problem 1P , additional homework tip 4for every edge Introduction to Algorithms, Chapter B, Problem 1P , additional homework tip 5
Explanation:
There are no loops in tree, if a color (0) is given to a node, then all its neighbors should be colored with a different color say color (1). Now color the neighbors of all these neighbors with color (0). In this way keep coloring alternating colors until the whole tree is colored. Since there are no loops no node will be visited and thus colored twice. In the end any path in the tree has vertices with alternating colors.
To show that the following are equivalent:
- G is bipartite.
- G is 2-colorable.
- G has no cycles of odd length.
Explanation of Solution
A bipartite graph has two sets of vertices which has equal number of vertices in those two sets. So, if the given graph G is bipartite that means it will be 2 colorable because one set of vertices can be colored with one color say color (0) and another set of vertices can be colored with another set of vertices say color (1).
The following figure shows the bipartite graph with chromatic numberIntroduction to Algorithms, Chapter B, Problem 1P , additional homework tip 6
Introduction to Algorithms, Chapter B, Problem 1P , additional homework tip 7
Also, it can be seen that it has no cycles of odd length from the above figure of bipartite graph.
So, on the basis of above illustration- the following points can be made-
- G is bipartite.
- G is 2-colorable.
- G has no cycles of odd length.
To prove that a Graph can be colored with Introduction to Algorithms, Chapter B, Problem 1P , additional homework tip 8colors where Introduction to Algorithms, Chapter B, Problem 1P , additional homework tip 9is the maximum degree of any vertex in graph.
Explanation of Solution
Greedy coloring procedure requires us to number the colorsthat are used. So, each time a new color is introduced it is numbered.
Greedy coloring
If the maximum degree vertex of a graph has degree d, let this vertex be v.
Color v with color 1.
Since all the adjacent vertices of 'v' have to be colored with a color other than color of 'v', let us assume that all the adjacent vertices are colored with different colors.
As number of neighbors is d, hence number of additional colors required is d. So, maximum d+1 colors are needed.
This is the maximum number of colors needed because in no case there will be more than d+1 colorsas the maximum degree is d. (All the neighbors and other nodes of graph have degree <= d)
Proof by mathematical induction:
Base case: A graph with just 1 vertex has maximum degree 0 and needs only 1 color. It is 1-colorable.
Inductive hypothesis: It can be assumed that any graph which has = k vertices and maximum vertex degree = d can be colored with d+1 colors.
Inductive Step: Now suppose there is a graph G with k+1 vertices and maximum degree d. Remove a vertex v (and all its edges) from G to create a smaller graph G'.
The maximum degree of G' is not greater than d, because removing a vertex from G' won't increase its degree. So, by the inductive hypothesis, G' can be colored with d + 1 colors. The neighbors of v are only using d of the available colors because v has maximum d neighbors, leaving a spare color that can be assigned to v.
Therefore, the coloring of G is an extension of coloring of G'. Hence, G can be colored with d+1 colors. G is (d+1)-colorable.
To show that a graph G can be colored with Introduction to Algorithms, Chapter B, Problem 1P , additional homework tip 10if it has Introduction to Algorithms, Chapter B, Problem 1P , additional homework tip 11edges.
Explanation of Solution
Run the above greedy algorithm when a colorIntroduction to Algorithms, Chapter B, Problem 1P , additional homework tip 12is used for the first time, to color a vetexIntroduction to Algorithms, Chapter B, Problem 1P , additional homework tip 13mark the edges joining Introduction to Algorithms, Chapter B, Problem 1P , additional homework tip 14to vertices already coloured which is atleastIntroduction to Algorithms, Chapter B, Problem 1P , additional homework tip 15
Every marked edge is marked only once during the process and at least Introduction to Algorithms, Chapter B, Problem 1P , additional homework tip 16edges will be marked when number of colors are used. So if number of colors are present, then number of edges will be colored. Introduction to Algorithms, Chapter B, Problem 1P , additional homework tip 17
Want to see more full solutions like this?
Chapter B Solutions
Introduction to Algorithms
- labmas Course Home XDocument courses/13810469/menu/a2c41aca-b4d9-4809-ac2e-eef29897ce04 There are three ionizable groups (weak acids and/or bases) in glutamic acid. Label them on the structure below Drag the appropriate labels to their respective targets. OOH [] CH3N CH CH2 CH2 IC HO Reset Helparrow_forwardPython - Need help! How do I have an input in turtle to display my name below the circle it draws and another input to display my age written below that? Code: import turtlebackground = "#FFFFFF" def draw_circle(radius, line_color, fill_color): my_turtle.color(line_color) my_turtle.fillcolor(fill_color) my_turtle.begin_fill() my_turtle.circle(radius) my_turtle.end_fill() def move_turtle(x, y): my_turtle.penup() my_turtle.goto(x, y) my_turtle.pendown() turtle.done()arrow_forwardNeed help fixing my python code! Images attached on the required modficications I dont know how to do. Simpler the better.Code: (in images)arrow_forward
- Answer all of the questions with steps by step explanation to every question.arrow_forwardW Go Tools Window Help mac283_quiz3_fall2025.pdf Page 2 of 2 @ Q Q Û • ̈ ® - Qy Search X 00 01 11 10 0 1 1 1 0 1 1 1 1 1 A ABC 88% Problem 3. Draw the combinational circuit that directly implements the Boolean expression: F(x, y, z) = xyz + (y2+z) Problem 4. Find the truth table that describes the following circuit. y- z - X Problem 5. a) Describe how a decoder works and indicate typical inputs and outputs. b) How many inputs does a decoder have if it has 64 outputs? NOV 6 M tv♫ zoomarrow_forwardCPS 2390 Extra Credit Assignment For each problem, choose the best answer and explain how you arrived at your answer. (15 points each.) 1.If control is redirected to location x4444 after the execution of the following instructions, what should have been the relationship between R1 and R2 before these instructions were executed? Address Instruction x4400 1001100010111111 x4401 0001100100100001 x4402 0001100001000100 x4403 0000100001000000 A. R1 R2 (R1 was greater than R2) B. R1 R2 (R2 was greater than R1) C. R1 R2 (R1 and R2 were equal) = D. Cannot be determined with the given information. 2. If the value stored in RO is 5 at the end of the execution of the following instructions, what can be inferred about R5? Address x3000 Instruction 0101000000100000 x3001 0101111111100000 x3002 0001110111100001 x3003 0101100101000110 x3004 0000010000000001 x3005 0001000000100001 x3006 0001110110000110 x3007 0001111111100001 x3008 0001001111111000 x3009 0000100111111000 x300A 0101111111100000 A. The...arrow_forward
- Need help writing code to answer this question in Python! (image attached)arrow_forwardNeed help with python code! How do I simplify my code for a beginner to understand, simple fixed format and centering? Such as: print(f"As an int variable: {age_int:^7}") print(f"In numeric binary: {age_int:^7b}") My Code:name = input("Enter your name: ")print(f"In text name is: {' '.join(name)}")decimal_values = []binary_values = []for letter in name: ascii_val = ord(letter) binary_val = format(ascii_val, '08b') decimal_values.append(str(ascii_val)) binary_values.append(binary_val)# Loop through each letter:print(f"In ASCII decimal: {' '.join(decimal_values)}")print(f"In ASCII binary: {' '.join(binary_values)}")# Ageage_str = input("Enter your age: ")age_int = int(age_str)print(f"As a string \"{age_str}\": {' '.join(age_str)}")age_decimal_values = []age_binary_values = []for digit in age_str: ascii_val = ord(digit) binary_val = format(ascii_val, '07b') age_decimal_values.append(str(ascii_val)) age_binary_values.append(binary_val)print(f"In ASCII decimal: {'...arrow_forwardDon't use chatgpt or any other AIarrow_forward
- Don't use chatgpt or any other AIarrow_forwardGiven a relation schema R = (A, B, C, D, E,G) with a set of functional dependencies F {ABCD BC → DE B→ D D→ A}. (a) Show that R is not in BCNF using the functional dependency A → BCD. (b) Show that AG is a superkey for R (c) Compute a canonical cover Fc for the set of functional dependencies F. Show your work. (d) Give a 3NF decomposition of R based on the canonical cover found in (c). Show your work. (e) Give a BCNF decomposition of R using F. Show your work.arrow_forwardThe following entity-relationship (ER) diagram models a database that helps car deal- ers maintain records of customers and cars in their inventory. Construct a relational database schema from the ER diagram. Your set of schemas should include primary-key and foreign-key constraints and you should ensure there are no redundant schemas. has_model model modelID name vehicle has_vehicle VIN dealer_ID brand name has_available_option has_option has_dealer options options_ID specification dealer dealer ID name customer_ID owned_by customer customer ID namearrow_forward
- Text book imageOperations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks ColeText book imageFundamentals of Information SystemsComputer ScienceISBN:9781305082168Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningText book image
- Text book imageC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningText book imagePrinciples of Information Systems (MindTap Course...Computer ScienceISBN:9781285867168Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningText book imageNew Perspectives on HTML5, CSS3, and JavaScriptComputer ScienceISBN:9781305503922Author:Patrick M. CareyPublisher:Cengage Learning