Concept explainers
(a)
To describe a dynamic-
Explanation of Solution
Given Information:
The shortest closed tour of the graph with length approximately is 24.89. The directed acyclic graph is shown below-
Introduction to Algorithms, Chapter 15, Problem 1P , additional homework tip 1
Explanation:
The dynamic-approach used to find the longest length simple path consider the graph G and vertices as V. The longest simple path must go through some edge of weight s or t . The algorithms to compute the longest weight path is
The base condition for the algorithm is
The algorithm to compute longest simple path in a directed acyclic graph is given below-
LONG-PATH(G,u,s,t,len)
If
set
return ( len,u )
else if
Return (len,u).
else
for each adjacent vertex
Check the distance after adding new vertex i.
if
end if.
end for.
end if.
return ( len,u ).
end.
In above algorithm, loop of for is used to determine the longest path and the longest path visit all vertex by checking all adjacent vertex.
The time taken by the algorithm is depends upon the number of vertex visited and the number of edges in the longest simple path. Suppose V represent the number of vertex used in the computing the longest simple path and E represent the number of edges then total running time of the algorithm is equals to
(b)
To describe a dynamic-programming approach for finding longest simple path in directed acyclic graph and also give the running time of the algorithm.
Explanation of Solution
Given Information:
The shortest closed tour of the graph with length approximately is 25.58. The directed acyclic graph is shown below-
Introduction to Algorithms, Chapter 15, Problem 1P , additional homework tip 2
Explanation:
The longest simple path must go through some edge of weight s . The base condition for the algorithm is
The algorithm to compute longest simple path in a directed acyclic graph is given below-
LONG-PATH(G,u,s,t,len)
If
set
return ( len,u )
else if
Return (len,u).
else
for each adjacent vertex
Check the distance after adding new vertex i.
if
end if.
end for.
end if.
return ( len,u ).
end.
The time taken by the algorithm is depends upon the number of vertex visited and the number of edges in the longest simple path. Suppose V represent the number of vertex used in the computing the longest simple path and E represent the number of edges then total running time of the algorithm is equals to
The above algorithm taken consideration of the nodes and generates the output according to the number of nodes in the graph so the longest length is computed by
Want to see more full solutions like this?
Chapter 15 Solutions
Introduction to Algorithms
- Python - Need help! How do I have an input in turtle to display my name below the circle it draws and another input to display my age written below that? Code: import turtlebackground = "#FFFFFF" def draw_circle(radius, line_color, fill_color): my_turtle.color(line_color) my_turtle.fillcolor(fill_color) my_turtle.begin_fill() my_turtle.circle(radius) my_turtle.end_fill() def move_turtle(x, y): my_turtle.penup() my_turtle.goto(x, y) my_turtle.pendown() turtle.done()arrow_forwardNeed help fixing my python code! Images attached on the required modficications I dont know how to do. Simpler the better.Code: (in images)arrow_forwardAnswer all of the questions with steps by step explanation to every question.arrow_forward
- W Go Tools Window Help mac283_quiz3_fall2025.pdf Page 2 of 2 @ Q Q Û • ̈ ® - Qy Search X 00 01 11 10 0 1 1 1 0 1 1 1 1 1 A ABC 88% Problem 3. Draw the combinational circuit that directly implements the Boolean expression: F(x, y, z) = xyz + (y2+z) Problem 4. Find the truth table that describes the following circuit. y- z - X Problem 5. a) Describe how a decoder works and indicate typical inputs and outputs. b) How many inputs does a decoder have if it has 64 outputs? NOV 6 M tv♫ zoomarrow_forwardCPS 2390 Extra Credit Assignment For each problem, choose the best answer and explain how you arrived at your answer. (15 points each.) 1.If control is redirected to location x4444 after the execution of the following instructions, what should have been the relationship between R1 and R2 before these instructions were executed? Address Instruction x4400 1001100010111111 x4401 0001100100100001 x4402 0001100001000100 x4403 0000100001000000 A. R1 R2 (R1 was greater than R2) B. R1 R2 (R2 was greater than R1) C. R1 R2 (R1 and R2 were equal) = D. Cannot be determined with the given information. 2. If the value stored in RO is 5 at the end of the execution of the following instructions, what can be inferred about R5? Address x3000 Instruction 0101000000100000 x3001 0101111111100000 x3002 0001110111100001 x3003 0101100101000110 x3004 0000010000000001 x3005 0001000000100001 x3006 0001110110000110 x3007 0001111111100001 x3008 0001001111111000 x3009 0000100111111000 x300A 0101111111100000 A. The...arrow_forwardNeed help writing code to answer this question in Python! (image attached)arrow_forward
- Need help with python code! How do I simplify my code for a beginner to understand, simple fixed format and centering? Such as: print(f"As an int variable: {age_int:^7}") print(f"In numeric binary: {age_int:^7b}") My Code:name = input("Enter your name: ")print(f"In text name is: {' '.join(name)}")decimal_values = []binary_values = []for letter in name: ascii_val = ord(letter) binary_val = format(ascii_val, '08b') decimal_values.append(str(ascii_val)) binary_values.append(binary_val)# Loop through each letter:print(f"In ASCII decimal: {' '.join(decimal_values)}")print(f"In ASCII binary: {' '.join(binary_values)}")# Ageage_str = input("Enter your age: ")age_int = int(age_str)print(f"As a string \"{age_str}\": {' '.join(age_str)}")age_decimal_values = []age_binary_values = []for digit in age_str: ascii_val = ord(digit) binary_val = format(ascii_val, '07b') age_decimal_values.append(str(ascii_val)) age_binary_values.append(binary_val)print(f"In ASCII decimal: {'...arrow_forwardDon't use chatgpt or any other AIarrow_forwardDon't use chatgpt or any other AIarrow_forward
- Given a relation schema R = (A, B, C, D, E,G) with a set of functional dependencies F {ABCD BC → DE B→ D D→ A}. (a) Show that R is not in BCNF using the functional dependency A → BCD. (b) Show that AG is a superkey for R (c) Compute a canonical cover Fc for the set of functional dependencies F. Show your work. (d) Give a 3NF decomposition of R based on the canonical cover found in (c). Show your work. (e) Give a BCNF decomposition of R using F. Show your work.arrow_forwardThe following entity-relationship (ER) diagram models a database that helps car deal- ers maintain records of customers and cars in their inventory. Construct a relational database schema from the ER diagram. Your set of schemas should include primary-key and foreign-key constraints and you should ensure there are no redundant schemas. has_model model modelID name vehicle has_vehicle VIN dealer_ID brand name has_available_option has_option has_dealer options options_ID specification dealer dealer ID name customer_ID owned_by customer customer ID namearrow_forwardA relation schema R = (A, B, C, D, E) with a set of functional dependencies F= {D A CAB} is decomposed into R1 = (A, B, C) and R2 = (C, D, E). (a) Is this a lossless-join decomposition? Why or why not? (b) Is the decomposition dependency preserving? Why or why not?arrow_forward
- Text book imageOperations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks ColeText book imageText book imageFundamentals of Information SystemsComputer ScienceISBN:9781305082168Author:Ralph Stair, George ReynoldsPublisher:Cengage Learning
- Text book imageC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningText book imagePrinciples of Information Systems (MindTap Course...Computer ScienceISBN:9781285867168Author:Ralph Stair, George ReynoldsPublisher:Cengage LearningText book imageNp Ms Office 365/Excel 2016 I NtermedComputer ScienceISBN:9781337508841Author:CareyPublisher:Cengage