WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

Sinc [z]

gives .

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Show More Show More
Function Properties  
Differentiation  
Integration  
Series Expansions  
Integral Transforms  
Function Identities and Simplifications  
Function Representations  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Tech Notes
Related Guides
History
Cite this Page

Sinc [z]

gives .

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • The argument of Sinc is assumed to be in radians. (Multiply by Degree to convert from degrees.)
  • Sinc [z] is equivalent to Sin [z]/z for , but is 1 for .
  • For certain special arguments, Sinc automatically evaluates to exact values.
  • Sinc can be evaluated to arbitrary numerical precision.
  • Sinc automatically threads over lists. »
  • Sinc can be used with Interval and CenteredInterval objects. »

Examples

open all close all

Basic Examples  (4)

The argument is given in radians:

Plot :

Plot over a subset of the complexes:

Find the Fourier transform of Sinc :

Scope  (43)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Evaluate for complex numbers:

Evaluate Sinc efficiently at high precision:

Compute the elementwise values of an array using automatic threading:

Or compute the matrix Sinc function using MatrixFunction :

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Or compute average-case statistical intervals using Around :

Specific Values  (4)

Values at zero:

Values of Sinc at fixed points:

Values at infinity:

The zeros of Sinc :

Find the first positive zero using Solve :

Substitute in the result:

Visualize the result:

Visualization  (3)

Plot the Sinc function:

Plot the real part of :

Plot the imaginary part of :

Polar plot with :

Function Properties  (10)

Sinc is defined for all real and complex values:

Approximate real range of Sinc :

Sinc is an even function:

Sinc is an analytic function of x:

Sinc is monotonic in a specific range:

Sinc is not injective:

Not surjective:

Sinc is neither non-negative nor non-positive:

Sinc has no singularities or discontinuities:

Sinc is neither convex nor concave:

In [-π/2, π/2], it is concave:

TraditionalForm formatting:

Differentiation  (2)

First derivative:

Higher derivatives:

Integration  (3)

Indefinite integral of Sinc :

Verify the antiderivative:

Definite integral of Sinc :

More integrals:

Series Expansions  (4)

Taylor expansion for Sinc :

Plot the first three approximations for Sinc around :

General term in the series expansion of Sinc :

The first-order Fourier series:

Sinc can be applied to a power series:

Integral Transforms  (3)

Compute the Laplace transform using LaplaceTransform :

MellinTransform :

HankelTransform :

Function Identities and Simplifications  (4)

Definition of Sinc :

Sinc of a sum:

Expand assuming real variables x and y:

Convert to exponentials:

Function Representations  (4)

Representation through Bessel functions:

Representation through gamma function:

Representation in terms of MeijerG :

Sinc can be represented as a DifferentialRoot :

Applications  (3)

Single-slit diffraction pattern for a 4λ slit:

Sinc-filtered Cauchy distribution:

A sinc signal is unaltered by sinc filter:

Properties & Relations  (2)

Use FunctionExpand to expand expressions involving Sinc :

Use FullSimplify to simplify expressions involving Sinc :

Possible Issues  (1)

Nontrivial minima and maxima of Sinc do not have ordinary closed forms:

Find numerical approximations:

Neat Examples  (1)

A surprising sequence:

Wolfram Research (2007), Sinc, Wolfram Language function, https://reference.wolfram.com/language/ref/Sinc.html (updated 2021).

Text

Wolfram Research (2007), Sinc, Wolfram Language function, https://reference.wolfram.com/language/ref/Sinc.html (updated 2021).

CMS

Wolfram Language. 2007. "Sinc." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/Sinc.html.

APA

Wolfram Language. (2007). Sinc. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Sinc.html

BibTeX

@misc{reference.wolfram_2025_sinc, author="Wolfram Research", title="{Sinc}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/Sinc.html}", note=[Accessed: 16-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_sinc, organization={Wolfram Research}, title={Sinc}, year={2021}, url={https://reference.wolfram.com/language/ref/Sinc.html}, note=[Accessed: 16-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /