WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

Resultant [poly1,poly2,var]

computes the resultant of the polynomials poly1 and poly2 with respect to the variable var.

Resultant [poly1,poly2,var,Modulus p]

computes the resultant modulo the prime p.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Generalizations & Extensions  
Options  
Method  
Modulus  
Applications  
Properties & Relations  
Possible Issues  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

Resultant [poly1,poly2,var]

computes the resultant of the polynomials poly1 and poly2 with respect to the variable var.

Resultant [poly1,poly2,var,Modulus p]

computes the resultant modulo the prime p.

Details and Options

  • The resultant of two polynomials p and q, both with leading coefficient 1, is the product of all the differences pi-qj between roots of the polynomials. The resultant is always a number or a polynomial.
  • Resultant takes the following options:
  • Method Automatic method to use
    Modulus 0 modulus to assume for integers

Examples

open all close all

Basic Examples  (1)

The resultant vanishes exactly when the polynomials have roots in common:

Scope  (6)

Resultant of polynomials with numeric coefficients:

Resultant of polynomials with parametric coefficients:

Resultant over integers modulo 3:

Resultant over a finite field:

The resultant reflects the multiplicities of roots:

Compute the resultant of two polynomials of degree :

Generalizations & Extensions  (1)

The resultant of rational functions is defined using the multiplicative property:

Options  (4)

Method  (1)

This compares timings of the available methods of resultant computation:

Modulus  (3)

By default the resultant is computed over the rational numbers:

Compute the resultant of the same polynomials over the integers modulo 2:

Compute the resultant of the same polynomials over the integers modulo 3:

Applications  (2)

Decide whether two polynomials have common roots:

Find conditions for two polynomials to have common roots:

Properties & Relations  (6)

The resultant is zero if and only if the polynomials have a common root:

The polynomials have a zero resultant if and only if they have a nonconstant PolynomialGCD :

The resultant can be represented in terms of roots as :

Equation relates Discriminant and Resultant :

GroebnerBasis can also be used to find conditions for common roots:

The same problem can also be solved using Reduce , Resolve , and Eliminate :

Possible Issues  (1)

The following two polynomials have no common root:

Using approximate coefficients they will appear to have a common root:

Using higher precision shows they have no common root:

History

Introduced in 1988 (1.0) | Updated in 2022 (13.2) 2023 (13.3)

Wolfram Research (1988), Resultant, Wolfram Language function, https://reference.wolfram.com/language/ref/Resultant.html (updated 2023).

Text

Wolfram Research (1988), Resultant, Wolfram Language function, https://reference.wolfram.com/language/ref/Resultant.html (updated 2023).

CMS

Wolfram Language. 1988. "Resultant." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/Resultant.html.

APA

Wolfram Language. (1988). Resultant. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Resultant.html

BibTeX

@misc{reference.wolfram_2025_resultant, author="Wolfram Research", title="{Resultant}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/Resultant.html}", note=[Accessed: 16-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_resultant, organization={Wolfram Research}, title={Resultant}, year={2023}, url={https://reference.wolfram.com/language/ref/Resultant.html}, note=[Accessed: 16-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /